• Title/Summary/Keyword: 합성율

Search Result 1,835, Processing Time 0.031 seconds

Thin Hardboard Manufacture from Waste Lignocellulosic Papers as Overlay Substitutes in Low Grade Plywood and Particle Board Panels(I) (고지로부터 저급합판 및 파아티클보오드 표면단판으로 사용될 수 있는 박판 하아드보오드의 제조(I))

  • Lee, Byung-Guen;Lee, Sang-Yeob
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.19-25
    • /
    • 1994
  • The purpose of this study was to determine the technical feasibility of making 3-dimensional thin hardboard panels for overlay substitutes of low grade particleboard and plywood panels. Experimental studies were directed at assembling bench-top apparatus, learning the characteristics of different types of lignocellulosic waste papers, for making thin hardboard with several combinations of them with and without resin addition. The raw materials used are waste corrugated cartons, cereal boxes, and old magazines which contain substantial amount of lignin in it. The experimental results showed that satisfactory thin(0.21~0.16cm) hardboard could be made from the residential mixed waste papers that have selected properties comparable to commercial 0.32cm hardboard. The significant mixing ratio effect of the waste papers was present on the thickness swelling, water absorption, linear expansion, and modulus of elasticity including Taber abrasion tests of the thin hardboard made. The mixing ratio of waste papers and resin in the thin hardboard prominently affected the specific gravity of it, which led to affect modulus of elasticity and those physical properties sensitively. And it was shown that the hardboard containing those physical properties can be used for overlay substitutes of low grade plywood and particleboard panels.

  • PDF

Measuring in vivo Rate of Bone Collagen Synthesis in Growing Rats (성장기 흰쥐의 골조직 Collagen 생성속도 측정)

  • 김유경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1390-1393
    • /
    • 2003
  • Measuring in vivo rate of bone collagen synthesis has so far been technically difficult and often subject to quite large errors. In the present study, bone collagen synthesis rate was measured using a precursor-product method, based on the exchange of $^2$$H_2O$ into amino acids. Mass isotopomer abundance in hydroxyproline from bone collagen was analyzed by gas chromatography/mass spectrometry. The $^2$$H_2O$ labeling protocol consisted of an initial intraperitoneal injection of 99.9% $^2$$H_2O$, to achieve approximately 2.5% body water enrichment followed by administration of 4% $^2$$H_2O$ in drinking water for 9 weeks. Body $^2$$H_2O$ enrichments were stable at 2.7 ∼ 3.0% over labeling Period. In growing rats, the fractional synthesis rate ( $k_{s}$) of bone collagen was 0.066 $\pm$ 0.049 w $k^{-1}$ . The unique features of stable $^2$$H_2O$ pools and label incorporation allowed the precursor-product approach to be used for measuring bone collagen synthesis rate..

Determination of equivalent elastic modulus of shotcrete-tetragonal lattice girder composite (사변형 격자지보재-숏크리트 합성부재의 등가물성 결정 기법)

  • Kang, Kyung-Nam;Song, Ki-Il;Kim, Sun Gil;Kim, Kyoung Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.2
    • /
    • pp.145-154
    • /
    • 2020
  • Steel set is a structure that stabilize the NATM tunnel until the installation of shotcrete, and it is combined after the shotcrete is installed to improve stability. In this study, determination approach for the equivalent elastic modulus of shotcrete-lattice girder composite is newly suggested for tunneling simulation. Also, a method was presented to calibrate the equivalent elastic modulus through the comparison of the full 3D model and equivalent model. When the conventional equivalent elastic modulus is used for shotcrete-lattice girder composite, the flexural strength of equivalent model is 130% smaller than that of full 3D model. Equivalent elastic modulus is adjusted considering the error of flexural strength. It is found that the error of flexural strength obtained from adjusted equivalent model using adjusted equivalent elastic modulus is reduced less than 1%.

Biochemical Studies of Ginseng Saponin on RNA and Protein Biosynthesis in the Rat Liver (간에서의 RNA, 단백질 생합성에 미치는 인삼성분의 생화학적 연구)

  • Oura Hikokichi
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.1-10
    • /
    • 1988
  • Previously. we reported that the intraperitoneal administration of ginseng crude saponin increased: (I) nuclear RNA polymerase activity. (2) nuclear RNA synthesis. (3) cytoplasmic RNA synthesis. (4) cytoplasmic heavy polyrioosome content. (5) amino acid incorporation in vitro of microsome and polysome isolated rat liver. and (6) the incorporation rate of labeled amino acids into serum protein. In addition, a spectacular increase in the rough endoplasmic reticulum of hepatocyte administered crude saponin for four weeks orally was shown through electron microscopy. An increase in polysomal content in membrane-hound ribosome was shown through ultracentrifugation. Recently, successive intraperitoneal. administration .of $ginsenosid-Rb_2$ was given to streptozotocin (STZ) diaoetic rats of hypoproteinemia. The blood urea nitrogen and hepatic urea concentration were decreased significantly. The total protein and alhumin levels in the serum were increased in comparison to control values. In contrast. the $ginsenoside-Rb_2$ treated group of STZ diahetic rats showed a significant increase in liver RNA. total ribosome and membrane-bound ribosomal contents. The administration of $ginsenoside-Rb_2$ increased the incorporation rate of labeled - precursor into total serum protein. Additionally $ginsenoside-Rb_2$ improved the nitrogen balance of diabetic rats. On the bases of these experimental results, ginseng saponin has a metabolic stimulatory or anabolic action on RNA and protein synthesis.

  • PDF

Synthesis of Sulfonated PET-g-GMA Fine Ion-exchange Fibers for Water Treatment by Photopolymerization and Their Adsorption Properties for Metal Ions (광중합법을 이용한 수처리용 설폰산형 PET-g-GMA 극세 이온 교환 섬유의 합성 및 금속 이온 흡착 특성)

  • Kwak Noh-Seok;Hwang Taek-Sung;Kim Sun-Mi;Yang Yun-Kyu;Kang Kyung-Seok
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.397-403
    • /
    • 2004
  • The sulfonated PET-g-GMA ion-exchange fine fibers were synthesized by UV radiation-induced graft copolymerization using a photoinitiator, and their chemical structure and adsorption properties were investigated. The optimum values for synthetic conditions - UV intensity, reaction time, and reaction temperature were 450 W, 60 min, and $40^{\circ}C$, respectively. Maximum values of the degree of sulfonation and ion exchange capacity were 8.12 mmol/g and 3.25 meq/g, respectively. Tensile strength of sulfonated PET-g-GMA fine ion exchange fibers was lower than that of PET trunk polymer as the grafting reaction rates increased. It was shown that as for the adsorption rate of $Ca^{2+}$ and $Mg^{2+}$ by the sulfonated PET-g-GMA fine ion exchange fibers, magnesium ion is slower than calcium ion in the solution. However, in the mixture of the calcium and magnesium ions, the adsorption rate of calcium ion was much slower than that of magnesium ion.

Optimization on the Stability of Coconut Oil in Water Emulsion Using Response Surface Methodology (반응표면분석법을 이용한 Coconut Oil 원료 O/W 유화액의 유화안정성 최적화)

  • Yoo, Bong-Ho;Zuo, Chengliang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.530-535
    • /
    • 2019
  • In this study, an optimization for the emulsification process with coconut oil and sugar ester was performed in conjunction with the central composite design (CCD) model of response surface methodology (RSM). Response values for the CCD model were the viscosity of the emulsion, mean droplet size, and emulsion stability index (ESI) after 7days from the reaction. On the other hand, the emulsification time, emulsification rate, and amount of emulsifier were selected as quantitative factors. According to the result of CCD, optimum conditions for the emulsification were as follows; the emulsification time of 22.63 min, emulsification speed of 6,627.41 rpm, and amount of emulsifier of 2.29 wt.%. Under these conditions, the viscosity, mean droplet size, and emulsion stability index (ESI) after 7 days from reaction were estimated as 1,707.56 cP, 1877.05 nm, and 93.23%, respectively. The comprehensive satisfaction of the CCD was indicated as 0.8848 with an average error of $1.2{\pm}0.1%$ from the experiment compared to that of the theoretical one. Overall, a very low error rate could be obtained when the central composite model was applied to the optimized coconut oil to water emulsification.

A Study on the Physical Properties of a Compound Using the Crosslinking of Vinylized-mesoporous Silica and Regenerated Polyethylene (비닐화 실란이 도입된 메조포러스 실리카와 재생 폴리에틸렌의 가교결합을 이용한 컴파운드의 물성 연구)

  • Tae-Yoon Kim;Hyun-Ho Park;Chang-Seop Lee
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.420-428
    • /
    • 2023
  • Crosslinking was introduced into vinylized-mesoporous silica and recycled polyethylene. By introducing a vinyl group into the mesoporous silica, it becomes a material capable of inducing cross-linking with non-polar polyethylene. By synthesizing vinylized-mesoporous silica and inducing crosslinking with recycled polyethylene, a recycled polyethylene composite with improved physical properties than existing recycled polyethylene was synthesized. In addition, even when a small amount is added according to the grade of recycled polyethylene using vinylized-mesoporous silica, the crosslinking reaction proceeds and all physical properties are improved. Four types of vinylized-mesoporous silica were synthesized, and the shape, microstructure, and functional groups were analyzed by TEM, BET, FT-IR, and XRD. Using vinylized-mesoporous silica, three types of compounds were blended by crosslinking reaction with recycled polyethylene. In order to confirm the presence or absence of crosslinking, analysis was performed using XPS and FT-IR, and physical properties such as tensile strength, elongation, flexural strength, and flexural modulus were confirmed using a universal testing machine. As a result, by applying vinylized-mesoporous silica to recycled polyethylene in various grades, the weak physical properties of existing recycled polyethylene were overcome. By applying the vinylized-mesoporous silica, recycled polyethylene composite material that overcomes the weak physical properties to the normal polyethylene, it shows the optimal physical property index that can be used commercially. Therefore, it is expected that it can potentially increase the use of recycled polyethylene and recycle resources.

Effect of zinc oxide nanoparticle types on the structural, mechanical and antibacterial properties of carrageenan-based composite films (산화아연 나노입자 유형이 카라기난 기반 복합 필름의 구조, 기계적 및 항균 특성에 미치는 영향)

  • Ga Young Shin;Hyo-Lyn Kim;So-Yoon Park;Mi So Park;Chanhyeong Kim;Jae-Young Her
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.126-137
    • /
    • 2024
  • In this study, zinc oxide nanoparticles (ZnONPs) were synthesized using three distinct zinc salts: zinc acetate, zinc chloride, and zinc nitrate. These ZnONPs were subsequently utilized in the fabrication of carrageenan-ZnONPs (Car-ZnONPs) composite films. The study assessed influence of the various ZnONPs on the morphological, water vapor barrier, color, optical, and antimicrobial properties of the Car-ZnONPs composite films. The surface morphology and UV-blocking attributes of the composite films were affected by the type of ZnONPs used, but their surface color, transparency, and chemical structure remained unaltered. The composite film's thickness and elongation at break (EB) significantly increased, while the tensile strength significantly decreased. In contrast, film's elastic modulus (EM) and water vapor permeability coefficient (WVP) showed no significant difference. All the composite films with added ZnONPs demonstrated potent antibacterial activity against Escherichia coli O157:H7 and Listeria monocytogenes . Among the carrageenan-based composite films, Car-ZnONPsZC showed the highest antibacterial and UV-blocking properties, and its elongation at break was significantly higher than that of the pure carrageenan films. This suggests that ZnONPs composite films have the potential to be used as an active packaging film, preserve the safety of the packaged food and extend shelf life.

Solid $CO_2$ sorbents and WGS catalyst for pre-combustion $CO_2$ capture (연소전 $CO_2$ 회수를 위한 고체 흡수제 및 WGS 촉매 특성 평가)

  • Eom, Tae Hyoung;Lee, Joong Beom;Park, Keun Woo;Choi, Dong Hyuk;Baek, Jeom-In;Ryu, Chong Kul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.111.1-111.1
    • /
    • 2010
  • 석탄가스화복합발전(IGCC: Integrated Gasification Combined Cycle)의 고온 고압 합성가스로부터 $CO_2$를 저비용으로 포집하기 위한 연소전 포집 기술 중 유동층 촉진수성가스전환(SEWGS) 공정이 제안되어 연구개발 중에 있다. 연소전 $CO_2$ 포집을 위한 SEWGS 공정은 동일한 2탑 순환 유동층 반응기에서 고온 고압의 합성가스($H_2$, CO)를 유동층 WGS 촉매를 사용하여 CO를 $CO_2$로 전환하는 동시에 전환반응으로 생성된 $CO_2$를 흡수제를 이용하여 포집하는 기술이다. 본 연구는 $CO_2$ 회수와 WGS 반응이 동시에 이루어지는 공정에 적용 가능한 건식 재생 흡수제 및 유동층 WGS 촉매 개발을 목표로 $CO_2$ 흡수제(P Series) 및 WGS 촉매(PC Series) 조성을 제안하고 분무건조기를 이용하여 6~8kg/batch로 성형 제조하였다. 제조된 $CO_2$ 흡수제 및 촉매의 특성 평가 결과 내마모도(Attrition resistance)를 포함한 물리적 특성이 유동층 공정의 요구조건을 만족하는 결과를 얻을 수 있었다. 또한, 모사 석탄 합성가스를 이용하여 20bar, $200^{\circ}C$ 흡수/$400^{\circ}C$ 재생 조건에서 열중량 분석기(TGA) 및 가압 유동층(Fluidized-bed) 반응기를 통한 흡수제의 $CO_2$ 흡수능 평가를 수행하였다. 그 결과 내마모도(AI) 3% 이하로 기계적 강도가 우수하며, $CO_2$ 흡수능 17.6 wt%(TGA) 및 11wt%(가압 유동층)를 나타냈다. 유동층 WGS 특성 평가 결과 내마모도가 7~35%로 우수하였고, CO 전환율은 $200^{\circ}C$에서 80% 이상으로, 유동층 SEWGS 공정에 적용 가능한 특성을 확인하였다.

  • PDF

Synthesis and Catalytic Performance of MTT Zeolites with Different Particle Size and Acidity (다양한 입자크기와 산성도를 지닌 MTT 제올라이트의 합성 및 촉매특성 연구)

  • Park, Sung Jun;Jang, Hoi-Gu;Cho, Sung June
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.600-606
    • /
    • 2018
  • The influence of acidity in MTT zeolite of different Si/Al molar ratio's on the catalyst activity in methanol-to-olefin (MTO) reaction has been investigated. The Si/Al ratio was controlled with the Al content in the gel when N,N,N',N'-tetramethyl-1,3-diaminopropane was used as a structure directing agent (SDA). The gel composition was controlled to $20SiO_2$ : 30SDA : x (=0.25~1.25)$NaAlO_2$ : 2NaOH : $624H_2O$, which was subject to the hydrothermal synthesis at 433 K for 4 days. As the composition of sodium aluminate decreased, the particle size of MTT zeolite increased, and also the amount of acid sites decreased. To investigate the catalytic performance, MTO reaction was carried out at 673 K with $1.2h^{-1}$ WHSV. It was found that the H-MTT (1.00Al) catalyst with a Si/Al molar ratio of 24 maintained the methanol conversion over 90% for 900 min.