Browse > Article
http://dx.doi.org/10.9713/kcer.2018.56.4.600

Synthesis and Catalytic Performance of MTT Zeolites with Different Particle Size and Acidity  

Park, Sung Jun (Department of Chemical Engineering, Chonnam National University)
Jang, Hoi-Gu (Department of Chemical Engineering, Chonnam National University)
Cho, Sung June (Department of Chemical Engineering, Chonnam National University)
Publication Information
Korean Chemical Engineering Research / v.56, no.4, 2018 , pp. 600-606 More about this Journal
Abstract
The influence of acidity in MTT zeolite of different Si/Al molar ratio's on the catalyst activity in methanol-to-olefin (MTO) reaction has been investigated. The Si/Al ratio was controlled with the Al content in the gel when N,N,N',N'-tetramethyl-1,3-diaminopropane was used as a structure directing agent (SDA). The gel composition was controlled to $20SiO_2$ : 30SDA : x (=0.25~1.25)$NaAlO_2$ : 2NaOH : $624H_2O$, which was subject to the hydrothermal synthesis at 433 K for 4 days. As the composition of sodium aluminate decreased, the particle size of MTT zeolite increased, and also the amount of acid sites decreased. To investigate the catalytic performance, MTO reaction was carried out at 673 K with $1.2h^{-1}$ WHSV. It was found that the H-MTT (1.00Al) catalyst with a Si/Al molar ratio of 24 maintained the methanol conversion over 90% for 900 min.
Keywords
MTT zeolite; Particle size; Acidity; MTO reaction;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Smith, J. V., "Definition of Zeolite," Zeolites, 4, 309(1984).   DOI
2 Weitkamp, J., "Zeolites and Catalysis," Solid State Ionics., 131, 175(2000).   DOI
3 Vermeiren, W. and Gilson, J.-P., "Impact of Zeolites on the Petroleum and Petrochemical Industry," Top. Catal., 52, 1131(2009).   DOI
4 Ward, J. W., "The Nature of Active Sites on Zeolites," J. Catal., 9, 225(1967).   DOI
5 Tanabe, K. and Holderich, W. F., "Industrial Application of Solid Acid-base Catalysts," Appl. Catal. A. Gen., 181, 399(1999).   DOI
6 Wilson, S. and Barger, P., "The Characteristics of SAPO-34 which Influence the Conversion of Methanol to Light Olefins," Microporous Mesoporous Mater., 29, 117(1999).   DOI
7 Teketel, S., Skistad, W., Benard, S., Olsbye, U., Lillerud, K. P., Beato, P. and Svelle, S., "Shape Selectivity in the Conversion of Methanol to hydrocarbons: The Catalytic Performance of One-dimensional 10-ring Zeolites: ZSM-22, ZSM-23, ZSM-48, andEU-1," ACS Catal., 2, 26(2012).   DOI
8 Teketel, S., Lundegaard, L. F., Skistad, W., Chavan, S. M., Olsbye, U., Lillerud, K. P., Beato, P. and Svelle, S., "Morphology-induced Shape Selectivity in Zeolite Catalysis," J. Catal., 327, 22(2015).   DOI
9 Losch, P., Pinar, A. B., Willinger, M. G., Soukup, K., Chavan, S., Vincent, B., Pale, P. and Louis, B., "H-ZSM-5 Zeolite Model Crystals: Structure-diffusion-activity Relationship in Methanol-to-olefins Catalysis," J. Catal., 345, 11(2017).   DOI
10 Nishiyama, N., Kawaguchi, M., Hirota, Y., Vu, D. V., Egashira, Y. and Ueyama, K., Appl. Catal. A. Gen., 362, 193(2009).   DOI
11 Wei, F. F., Cui, Z. M., Meng, X. J., Cao, C. Y., Xiao, F. S. and Song, W. G., "Origin of the Low Olefin Production over HZSM-22 and HZSM-23 Zeolites: External Acid Sites and Pore Mouth Catalysis," ACS Catal., 4, 529(2014).   DOI
12 Plank, C. J., Rosinski, E. J., Rubin, M. K., "Crystalline Zeolite ZSM-23 and Synthesis Thereof," US Pat., 4076842(1978).
13 Wu, Q., Wang, X., Meng, X., Yang, C., Liu, Y., Jin, Y. Y., Yang, Q. and Xiao, F.-S., "Organotemplate-free, Seed-directed, and Rapid Synthesis of Al-rich Zeolite MTT with Improved Catalytic Performance in Isomerization of m-xylene," Microporous Mesoporous Mater., 186, 106(2014).   DOI
14 Wang, B. C., Tian, Z. J., Li, P., Wang L., Xu, Y. P., Qu, W., He, Y. L., Ma, H. J., Xu, Z. S. and Lin, L. W., "A Novel Approach to Synthesize ZSM-23 Zeolite Involving N,N-dimethylformamide," Microporous Mesoporous Mater., 134, 203(2010).   DOI
15 Stocker, M., "Methanol-to-hydrocarbons: Catalytic Materials and Their Behavior," Microporous Mesoporous Mater., 29, 3(1999).   DOI
16 Valyocsik, E. W., "Synthesis of ZSM-23 Zeolite," US Pat., 4490342(1984).
17 Valyocsik, E. W., "Synthesis of ZSM-23 Zeolite and the Product Produced," US Pat., 4619820(1986).
18 Wang, B., Gao, Q., Gao, J. D., Ji, D., Wang, X. L., Suo, J. S., "Synthesis, Characterization and Catalytic C4 Alkene Cracking Properties of Zeolite ZSM-23," Appl. Catal. A. Gen., 274, 167(2004).   DOI
19 Huybrech, W., Vanbutsele, G., Houthoofd, K. J., Bertinchamps, F., Narasimhan, C. S. L., Gaigneaux, E. M., Thybaut, J. W., Marin, G. B., denayer, J. F. M., Baron, G. V., Jacobs, P. A. and Martens, J. A., "Skeletal Isomerization of Octadecane on Bifunctional ZSM-23 Zeolite Catalyst," Catal. Letters, 100, 235(2005).   DOI
20 Rouleau, L., Kolenda, F., Benazzi, E., "MTT Zeolite Comprising Crystals and Crystal Aggregates with Specific Granulometries, and its use as a Catalyst for Isomerizing Straight chain Paraffins," US Pat. 6692723(2004).
21 Liu, Y., Wang, Z. D., Ling, Y., Li, X. B., Liu, Y. M. and Wu, P., "Synthesis of ZSM-23 Zeolite using Isopropylamine as Template," Chin. J. Catal., 30(6), 525(2009).   DOI
22 Lee, H. J., Kim, S. H., Kim, J. H., Park, S. J. and Cho, S. J., "Synthesis and Characterization of Zeolites MTT and MFI, with Controlled Morphologies using Mixed Structure Directing Agents," Microporous Mesoporous Mater., 195, 205(2014).   DOI
23 Muller, S., Liu, Y., Vishnuvarthan, M., Sun, X., Veen, A. C. V., Haller, G. L., Sanchez-Sanchez, M. and Lercher, J. A., "Coke Formation and Deactivation Pathways on H-ZSM-5 in the Conversion of Methanol to Olefins," J. Catal., 325, 48(2015).   DOI
24 Molino, A., Lukaszuk, K. A., Rojo-Gama, D., Lillerud, K. P., Olsbye, U., Bordiga, S., Svelle, S. and Beato, P., "Conversion of Methanol to Hydrocarbons over Zeolite ZSM-23 (MTT): Exceptional Effects of Particle Size on Catalytst Lifetime," Chem. Commun., 53, 6816(2017).   DOI
25 Sedighi, M., Ghasemi, M. and Jahangiri, A., "Catalytic Performance of CeAPSO-34 Molecular Sieve with Various Cerium Content for Methanol Conversion to Olefin," Korean J. Chem. Eng., 34(4), 997(2017).   DOI
26 Rashidi, H., Shariati, A., Khosravi-Nikou, M. R. and Hamoule, T., "A Selective Catalyst for Methanol Conversion into Light Olefin with a High Propylene to Ethylene Ratio," Korean J. Chem. Eng., 33(8), 2319(2016).   DOI
27 Park, S. J., Jang, H.-G., Lee, K.-Y. and Cho, S. J., "Improved Methanol-to-Olefin Reaction Selectivity and Catalyst Life by $CeO_2$ Coating of Ferrierite Zeolite," Microporous Mesoporous Mater., 256, 155(2018).   DOI
28 Kim, S. J., Jang, H.-G. and Seo, G., "Methanol-to-olefin Conversion over UZM-9 Zeolite: Effect of Transition Metal Ion Exchange on its Deactivation," Korean Chem. Eng. Res., 51, 181(2013).   DOI
29 Marler, B., Deroche, C. and Gies, H., "The Structure of Zeolite ZSM-23 (MTT) Refined from Synchrotron X-ray Powder Data," J. Appl. Crystallogr., 26, 636 (1993).   DOI
30 Sing, K. S.W., Everett, D. H., Haul, R., Moscou, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska, T., "Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity," Pure Appl. Chem., l. 57, 603(1985).   DOI