• 제목/요약/키워드: 합성영상

검색결과 1,480건 처리시간 0.029초

3차원 영상의 중간시점 영상 합성을 위한 특징 기반 변이 추정 (Feature-Based Disparity Estimation for Intermediate View Reconstruction of Multiview Images)

  • 김한성;김성식;손정영;손광훈
    • 한국통신학회논문지
    • /
    • 제26권11A호
    • /
    • pp.1872-1879
    • /
    • 2001
  • 본 논문에서는 다시점 영상에서 영상의 특성을 고려하여 효율적으로 미세 변이를 추정하고 중간 시점 영상을 합성하는 알고리듬을 제안하며 이를 모의 실험을 통해 검증한다. 제안한 방법은 영역분할 양방향 화소정합을 통해 변이 추정의 수행 속도를 향상시키는 동시에 신뢰도를 높이며, 적절한 비용함수의 제안과 유사 영역에 대한 정합 창 확장 알고리듬, 변이 평활화와 불확실 영역 변이 할당 알고리듬을 통해 잘못 할당된 변이와 불확실 영역을 제거함으로서 변이의 신뢰도를 더욱 높일 수 있다. 이렇게 추정된 변이는 다시점 영상의 중간 시점 영상 합성을 위해 사용된다. 제안된 방식을 통해 기존의 방식들보다 더욱 안정적인 변이 정보를 얻을 수 있었고, 합성된 중간 시점 영상도 객관적으로나 주관적으로나 더욱 좋은 결과를 보였으며, 또한 전체적인 수행 시간도 줄어들어 더 효율적인 알고리듬임을 확인할 수 있었다.

  • PDF

불균일 안개 영상 합성을 이용한 딥러닝 기반 안개 영상 깊이 추정 (Non-Homogeneous Haze Synthesis for Hazy Image Depth Estimation Using Deep Learning)

  • 최영철;백지현;주광진;이동건;황경하;이승용
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제28권3호
    • /
    • pp.45-54
    • /
    • 2022
  • 영상의 깊이 추정은 다양한 영상 분석의 기반이 되는 기술이다. 딥러닝 모델을 활용한 분석 방법이 대두되면서, 영상의 깊이 추정 분야 또한 딥러닝을 활용하는 연구가 활발하게 이루어지고 있다. 현재 대부분의 딥러닝 영상 깊이 추정 모델들은 깨끗하고 이상적인 환경에서 학습되고 있다. 하지만 연무, 안개가 낀 열악한 환경에서도 깊이 추정 기술이 잘 동작할 수 있으려면 이러한 환경의 데이터를 포함하여야 한다. 하지만 열악한 환경의 영상을 충분히 확보하는 것이 어려운 실정이며, 불균일한 안개 데이터를 얻는 것은 특히 어려운 문제이다. 이를 해결하기 위해, 본 연구에서는 불균일 안개 영상 합성 방법과 이를 활용한 단안 기반의 깊이 추정 딥러닝 모델의 학습을 제안한다. 안개가 주로 실외에서 발생하는 것을 고려하여, 실외 위주의 데이터 세트를 구축한다. 그리고 실험을 통해 제안된 방법으로 학습된 모델이 합성 데이터와 실제 데이터에서 깊이를 잘 추정하는 것을 보인다.

CCTV 영상을 활용한 합성곱 신경망 기반 강우강도 산정 (Revolutionizing rainfall estimation through convolutional neural networks leveraging CCTV imagery)

  • 변종윤;김현준;이진욱;전창현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.120-120
    • /
    • 2023
  • 본 연구에서는 CCTV 영상 내 빗줄기의 특성을 바탕으로 강우강도를 산정하기 위한 합성곱 신경망(CNNs, Convolutional Neural Networks) 기반 강우강도 산정 모형을 제안하였다. 중앙대학교 및 한국건설생활환경시험연구원 내 대형기후환경시험실에서 얻은 CCTV 영상들을 대상으로 연구를 수행하고, 우적계 등과 같은 지상 관측자료와 강우강도 산정 결과를 비교·검증하였다. 먼저, CCTV 영상 내 빗줄기의 미세한 변동 특성을 반영하기 위해 데이터 전처리 작업을 진행하였다. 이는 원본 영상으로부터 빗줄기 층을 분리해내는 과정, 빗줄기 층에서 빗물 입자를 분리해내는 과정, 그리고 빗물 입자를 인식하는 과정 등 총 세 단계로 구분된다. 합성곱 신경망 기반 강우강도 산정 모형 구축을 위해 영상 전처리가 완료된 데이터들을 입력값으로 설정하고, 촬영 시점에 대응되는 지상관측 자료를 출력값으로 고려하여 강우강도 산정모형을 훈련시켰다. CCTV 원자료 내 특정 영역에 편향되어 강우강도를 산정하는 과적합 현상의 발생을 방지하기 위해 원자료 내 5개의 관심 영역(ROI, Region of Interest)을 설정하였다. 추가로, CCTV의 해상도를 총 4개(2560×1440, 1920×1080, 1280×720, 720×480)로 구분함으로써 해상도 변화에 따른 학습 결과의 차이를 분석·평가하였다. 이는 기존 사례들과 비교했을 때, CCTV 영상을 기반으로 빗줄기의 거동 특성과 같은 물리적인 현상을 직간접적으로 고려하여 강우강도를 산정했다는 점과 더불어 머신러닝을 적용하여 강우 이미지가 갖는 본질적인 특징들을 파악했다는 측면에서, 추후 본 연구에서 제안한 모형의 활용 가치가 극대화될 수 있을 것으로 판단된다.

  • PDF

Sentinel-1 SAR 위성영상을 이용한 적설 공간분포의 추정 (Estimation of spatial distribution of snow depth using Sentinel-1 SAR satellite image)

  • 박희성;정건희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.443-443
    • /
    • 2022
  • 적설은 자주는 아니지만 가끔 비교적 넓은 범위에 피해를 발생시킨다. 적설에 의한 피해를 예방하기 위해서는 피해를 유발하는 적설심을 미리 파악해 둘 필요가 있다. 하지만 관측하고 있는 적설심은 특정 관측지점으로 한정되어 피해를 유발하는 한계적설심을 파악하는데 어려움이 있다. 이를 극복하기 위한 일반적인 방법은 관측지점의 적설을 보간하여 공간적으로 확대하는 것이다. 하지만 이것은 매우 적은 자료를 가지고 넓은 영역을 통계적으로 추정해야하는 한계로 인해 피해 유발 한계적설심의 구명에 더 혼란을 주기도 한다. 이를 보완하기 위해서는 넓은 영역을 관측하는 위성영상을 활용할 수 있으며, 그 중에서도 합성개구레이더(Synthetic Aperture Radar; SAR)를 이용한 InSAR(Interferometric Synthetic Aperture Radar) 기법은 이를 위해 적절한 방법일 수 있다. 영상의 간섭계는 두 개의 다른 시기에 측정된 합성개구레이더 영상의 위상차를 이용한 것으로 일반적으로 다른 조건들이 일치할 때 지형의 변화를 추적할 때 사용되곤 한다. 그런데 만약 두 시기 사이에 특별한 지형적인 변화를 일으키는 요인이 없고 단지 적설만이 존재한다면 두 영상의 위상차는 적설의 효과로 볼 수 있을 것이다. 적설이 전파의 전달경로를 다르게 만들어 위상차를 발생시키는 것으로 가정할 수 있다. 이때 발생하는 위상차는 적설심과 적설의 굴절률에 의해 다를 수 있다. 이에 본 연구에서는 적설 전후에 수집된 인공위성 합성개구레이더 자료의 위상차를 분석한 간섭영상을 이용해 적설심의 공간분포를 추정하여 비교해 보고자 한다. 이를 위해 적설에 대한 투과가 가능한 C밴드 레이더를 사용하는 Sentinel-1의 영상을 사용하였다. 적설심의 공간분포는 실제 피해발생지역의 적설심을 보다 정확하게 추정하는데 기여할 수 있으며, 이것은 실제 피해유발적설심을 파악하는데 도움이 될 것이다.

  • PDF

3 차원 비디오의 합성영상 경계 잡음 제거 (Boundary artifacts reduction for synthesized views in 3D video)

  • 이도훈;양윤모;오병태
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.302-305
    • /
    • 2016
  • 본 논문에서는 3 차원 영상시스템에서 발생하는 경계 잡음을 Projection onto Convex Sets(POCS) 방법을 활용하여 제거하는 기법에 대해서 소개한다. 3 차원 영상시스템에서의 경계 잡음은 일반적으로 손상된 깊이영상 의하여 가상 시점의 합성 과정에서 발생하는 잡음을 뜻한다. 본 논문에서는 이러한 경계 잡음을 분석하고, 제안 방식을 이용하여 효과적으로 제거할 수 있음을 여러 실험을 통하여 확인하였다.

  • PDF

깊이 맵의 재배열을 통한 개선된 영상 합성 방법 (Improved Video Synthesis Method by Depth Map Rearrangement)

  • 김태우;박진현;원석호;신지태
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 하계학술대회
    • /
    • pp.352-355
    • /
    • 2011
  • 본 논문에서는 깊이 맵의 재배열 과정을 통해서, 보다 개선된 영상을 합성하는 방법을 제안한다. 제안하는 방법은 전체 깊이 맵을 여러 그룹(Group)으로 나누고, 각각의 그룹에 서로 다른 가중치를 주어 가까운 물체에 좀 더 많은 깊이 값을 가질수 있도록 조절하였다. 깊이 맵 추정(Depth Estimation) 및 중간 시점 영상의 합성(View Synthesis)을 통하여 기존 방식과의 비교를 진행하였고 그 결과, 전체적인 비디오 시퀀스(Video Sequence)에 대한 PSNR은 유지하면서, 보다 시각적으로 자연스러운 영상을 얻을 수 있었다.

  • PDF

정렬 오류 누적에 강인한 실시간 파노라마 합성 방법 (Real-time panoramic stitching algorithm robust to alignment error accumulation)

  • 김범수;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 하계학술대회
    • /
    • pp.381-384
    • /
    • 2012
  • 모바일 기기에서 연속적으로 입력되는 영상을 파노라마 합성을 하여 사용자에게 실시간으로 결과를 보여주는 기존의 실시간 파노라마 기법은 트래킹을 기반으로 하고 이미 채워진 영역은 재투영 하지 않기 때문에, 정렬 오류가 누적되고 누적된 정렬 오류가 결과 영상에 그대로 반영되는 문제가 있다. 이를 해결하기 위하여 본 논문에서는 실시간으로 합성된 파노라마 결과에서 정렬 오류가 존재하는 부분과 장면에서 움직이는 물체가 투영된 부분을 판별하고 이 부분만을 다시 투영하는 방법을 제안한다. 정렬 오류가 발생한 부분을 판별하기 위하여, 시간차가 존재하는 여러 장의 영상을 정렬한 후 같은 위치의 픽셀에 속하는 컬러 값을 큐에 저장한다. 정렬 오류가 발생하거나, 움직이는 물체가 존재하는 경우 큐에 저장된 컬러 값의 차이가 커지게 되고 이러한 부분은 다시 투영하여 파노라마 결과 영상에서 오류를 보정하게 된다. 또한 정렬 오류를 최대한 보정하기 위하여 두 단계로 이루어진 블렌딩 방법을 제안한다. 제안하는 방법은 실시간으로 동작하연서 정렬 오류가 발생한 부분을 효과적으로 판별하여 기존의 방법에 비하여 정렬 오류가 줄어듦을 확인하였다.

  • PDF

위성편대비행을 이용한 우주간섭계의 관측영상 예측

  • 진유민;박상영
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2010년도 한국우주과학회보 제19권1호
    • /
    • pp.27.3-27.3
    • /
    • 2010
  • 편대비행위성을 이용하여 우주간섭계 영상시스템을 구현하였을때 위성의 배치에 따른 점분포함수(Point Spread Function, PSF)를 계산하고 관측될 영상을 예측하여 편대비행위성 간섭계 관측시스템의 예상되는 성능을 분석하였다. 적외선과 가시광 영역에서 관측하는 경우에 대하여 단일구경과 합성구경 관측시스템의 점분포함수를 계산하고 이에 해당되는 예측 영상의 해상도를 비교하였을 때, 합성구경으로 관측 시 더 높은 해상도를 보이는 것을 확인하였다. 또한 편대비행 위성을 이용하여 합성구경 관측을 하는 경우에 대하여 단순한 원형 배열뿐만 아니라 간섭계 관측에 유리한 골레이(Golay) 배열 등 다양한 위성 배치에 따른 점분포함수를 구하고 비교하여 위성 배치에 따른 간섭계관측 시스템의 성능 차이를 분석하였다. 이 결과를 통하여 실제 편대비행위성을 이용하여 간섭계 관측시스템을 구현할 때, 관측시스템을 구성하는 편대 위성의 개수와 배치를 효율적으로 결정할 수 있는 토대를 마련하였다.

  • PDF

단안 비디오로부터의 5D 라이트필드 비디오 합성 프레임워크 (Deep Learning Framework for 5D Light Field Synthesis from Single Video)

  • 배규호;;박인규
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.150-152
    • /
    • 2019
  • 본 논문에서는 기존의 연구를 극복하여 단일 영상이 아닌 단안 비디오로부터 5D 라이트필드 영상을 합성하는 딥러닝 프레임워크를 제안한다. 현재 일반적으로 사용 가능한 Lytro Illum 카메라 등은 초당 3프레임의 비디오만을 취득할 수 있기 때문에 학습용 데이터로 사용하기에 어려움이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 가상 환경 데이터를 구성하며 이를 위해 UnrealCV를 활용하여 사실적 그래픽 렌더링에 의한 데이터를 취득하고 이를 학습에 사용한다. 제안하는 딥러닝 프레임워크는 두 개의 입력 단안 비디오에서 $5{\times}5$의 각 SAI(sub-aperture image)를 갖는 라이트필드 비디오를 합성한다. 제안하는 네트워크는 luminance 영상으로 변환된 입력 영상으로부터 appearance flow를 추측하는 플로우 추측 네트워크(flow estimation network), appearance flow로부터 얻어진 두 개의 라이트필드 비디오 프레임 간의 optical flow를 추측하는 광학 플로우 추측 네트워크(optical flow estimation network)로 구성되어있다.

  • PDF

템플릿 기반의 자동 소셜 매거진 및 영상 합성 서비스 (Template-based Auto Social Magazine and Video Creation Service)

  • 이재원;장달원;김미지;김지수;김서율;이종설
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.129-132
    • /
    • 2019
  • 최근 자연어 처리 기술에 대한 중요도가 높아지고, 발전 속도가 빨라지면서, 산업 전반에 걸쳐 챗봇에 대한 수요가 증가하고 있다. 본 논문은 챗봇을 이용한 소셜 매거진 생성 및 배포, 그리고 이를 활용하여 사용자에게 텍스트를 음성으로 변환하여 동영상의 형태로 전달해 주는 시스템을 다루고 있다. 챗봇이 사용자 대화를 수집, 분석하여 상황에 맞는 키워드를 추출하고, 중복 콘텐츠 제거, 텍스트 요약 등 일련의 과정을 거쳐 소셜 매거진을 생성 및 배포하는 서비스와, 매거진의 각 콘텐츠를 구성하는 이미지, 텍스트 정보를 가지고 음성 합성, 자막 생성, 영상 효과 등을 이용하여 영상을 합성하는 서비스에 관한 것이다. 본 논문에서 제안한 시스템에 대한 성능은 실험을 통하여 검증하였다.

  • PDF