본 논문에서는 다시점 영상에서 영상의 특성을 고려하여 효율적으로 미세 변이를 추정하고 중간 시점 영상을 합성하는 알고리듬을 제안하며 이를 모의 실험을 통해 검증한다. 제안한 방법은 영역분할 양방향 화소정합을 통해 변이 추정의 수행 속도를 향상시키는 동시에 신뢰도를 높이며, 적절한 비용함수의 제안과 유사 영역에 대한 정합 창 확장 알고리듬, 변이 평활화와 불확실 영역 변이 할당 알고리듬을 통해 잘못 할당된 변이와 불확실 영역을 제거함으로서 변이의 신뢰도를 더욱 높일 수 있다. 이렇게 추정된 변이는 다시점 영상의 중간 시점 영상 합성을 위해 사용된다. 제안된 방식을 통해 기존의 방식들보다 더욱 안정적인 변이 정보를 얻을 수 있었고, 합성된 중간 시점 영상도 객관적으로나 주관적으로나 더욱 좋은 결과를 보였으며, 또한 전체적인 수행 시간도 줄어들어 더 효율적인 알고리듬임을 확인할 수 있었다.
영상의 깊이 추정은 다양한 영상 분석의 기반이 되는 기술이다. 딥러닝 모델을 활용한 분석 방법이 대두되면서, 영상의 깊이 추정 분야 또한 딥러닝을 활용하는 연구가 활발하게 이루어지고 있다. 현재 대부분의 딥러닝 영상 깊이 추정 모델들은 깨끗하고 이상적인 환경에서 학습되고 있다. 하지만 연무, 안개가 낀 열악한 환경에서도 깊이 추정 기술이 잘 동작할 수 있으려면 이러한 환경의 데이터를 포함하여야 한다. 하지만 열악한 환경의 영상을 충분히 확보하는 것이 어려운 실정이며, 불균일한 안개 데이터를 얻는 것은 특히 어려운 문제이다. 이를 해결하기 위해, 본 연구에서는 불균일 안개 영상 합성 방법과 이를 활용한 단안 기반의 깊이 추정 딥러닝 모델의 학습을 제안한다. 안개가 주로 실외에서 발생하는 것을 고려하여, 실외 위주의 데이터 세트를 구축한다. 그리고 실험을 통해 제안된 방법으로 학습된 모델이 합성 데이터와 실제 데이터에서 깊이를 잘 추정하는 것을 보인다.
본 연구에서는 CCTV 영상 내 빗줄기의 특성을 바탕으로 강우강도를 산정하기 위한 합성곱 신경망(CNNs, Convolutional Neural Networks) 기반 강우강도 산정 모형을 제안하였다. 중앙대학교 및 한국건설생활환경시험연구원 내 대형기후환경시험실에서 얻은 CCTV 영상들을 대상으로 연구를 수행하고, 우적계 등과 같은 지상 관측자료와 강우강도 산정 결과를 비교·검증하였다. 먼저, CCTV 영상 내 빗줄기의 미세한 변동 특성을 반영하기 위해 데이터 전처리 작업을 진행하였다. 이는 원본 영상으로부터 빗줄기 층을 분리해내는 과정, 빗줄기 층에서 빗물 입자를 분리해내는 과정, 그리고 빗물 입자를 인식하는 과정 등 총 세 단계로 구분된다. 합성곱 신경망 기반 강우강도 산정 모형 구축을 위해 영상 전처리가 완료된 데이터들을 입력값으로 설정하고, 촬영 시점에 대응되는 지상관측 자료를 출력값으로 고려하여 강우강도 산정모형을 훈련시켰다. CCTV 원자료 내 특정 영역에 편향되어 강우강도를 산정하는 과적합 현상의 발생을 방지하기 위해 원자료 내 5개의 관심 영역(ROI, Region of Interest)을 설정하였다. 추가로, CCTV의 해상도를 총 4개(2560×1440, 1920×1080, 1280×720, 720×480)로 구분함으로써 해상도 변화에 따른 학습 결과의 차이를 분석·평가하였다. 이는 기존 사례들과 비교했을 때, CCTV 영상을 기반으로 빗줄기의 거동 특성과 같은 물리적인 현상을 직간접적으로 고려하여 강우강도를 산정했다는 점과 더불어 머신러닝을 적용하여 강우 이미지가 갖는 본질적인 특징들을 파악했다는 측면에서, 추후 본 연구에서 제안한 모형의 활용 가치가 극대화될 수 있을 것으로 판단된다.
적설은 자주는 아니지만 가끔 비교적 넓은 범위에 피해를 발생시킨다. 적설에 의한 피해를 예방하기 위해서는 피해를 유발하는 적설심을 미리 파악해 둘 필요가 있다. 하지만 관측하고 있는 적설심은 특정 관측지점으로 한정되어 피해를 유발하는 한계적설심을 파악하는데 어려움이 있다. 이를 극복하기 위한 일반적인 방법은 관측지점의 적설을 보간하여 공간적으로 확대하는 것이다. 하지만 이것은 매우 적은 자료를 가지고 넓은 영역을 통계적으로 추정해야하는 한계로 인해 피해 유발 한계적설심의 구명에 더 혼란을 주기도 한다. 이를 보완하기 위해서는 넓은 영역을 관측하는 위성영상을 활용할 수 있으며, 그 중에서도 합성개구레이더(Synthetic Aperture Radar; SAR)를 이용한 InSAR(Interferometric Synthetic Aperture Radar) 기법은 이를 위해 적절한 방법일 수 있다. 영상의 간섭계는 두 개의 다른 시기에 측정된 합성개구레이더 영상의 위상차를 이용한 것으로 일반적으로 다른 조건들이 일치할 때 지형의 변화를 추적할 때 사용되곤 한다. 그런데 만약 두 시기 사이에 특별한 지형적인 변화를 일으키는 요인이 없고 단지 적설만이 존재한다면 두 영상의 위상차는 적설의 효과로 볼 수 있을 것이다. 적설이 전파의 전달경로를 다르게 만들어 위상차를 발생시키는 것으로 가정할 수 있다. 이때 발생하는 위상차는 적설심과 적설의 굴절률에 의해 다를 수 있다. 이에 본 연구에서는 적설 전후에 수집된 인공위성 합성개구레이더 자료의 위상차를 분석한 간섭영상을 이용해 적설심의 공간분포를 추정하여 비교해 보고자 한다. 이를 위해 적설에 대한 투과가 가능한 C밴드 레이더를 사용하는 Sentinel-1의 영상을 사용하였다. 적설심의 공간분포는 실제 피해발생지역의 적설심을 보다 정확하게 추정하는데 기여할 수 있으며, 이것은 실제 피해유발적설심을 파악하는데 도움이 될 것이다.
본 논문에서는 3 차원 영상시스템에서 발생하는 경계 잡음을 Projection onto Convex Sets(POCS) 방법을 활용하여 제거하는 기법에 대해서 소개한다. 3 차원 영상시스템에서의 경계 잡음은 일반적으로 손상된 깊이영상 의하여 가상 시점의 합성 과정에서 발생하는 잡음을 뜻한다. 본 논문에서는 이러한 경계 잡음을 분석하고, 제안 방식을 이용하여 효과적으로 제거할 수 있음을 여러 실험을 통하여 확인하였다.
본 논문에서는 깊이 맵의 재배열 과정을 통해서, 보다 개선된 영상을 합성하는 방법을 제안한다. 제안하는 방법은 전체 깊이 맵을 여러 그룹(Group)으로 나누고, 각각의 그룹에 서로 다른 가중치를 주어 가까운 물체에 좀 더 많은 깊이 값을 가질수 있도록 조절하였다. 깊이 맵 추정(Depth Estimation) 및 중간 시점 영상의 합성(View Synthesis)을 통하여 기존 방식과의 비교를 진행하였고 그 결과, 전체적인 비디오 시퀀스(Video Sequence)에 대한 PSNR은 유지하면서, 보다 시각적으로 자연스러운 영상을 얻을 수 있었다.
모바일 기기에서 연속적으로 입력되는 영상을 파노라마 합성을 하여 사용자에게 실시간으로 결과를 보여주는 기존의 실시간 파노라마 기법은 트래킹을 기반으로 하고 이미 채워진 영역은 재투영 하지 않기 때문에, 정렬 오류가 누적되고 누적된 정렬 오류가 결과 영상에 그대로 반영되는 문제가 있다. 이를 해결하기 위하여 본 논문에서는 실시간으로 합성된 파노라마 결과에서 정렬 오류가 존재하는 부분과 장면에서 움직이는 물체가 투영된 부분을 판별하고 이 부분만을 다시 투영하는 방법을 제안한다. 정렬 오류가 발생한 부분을 판별하기 위하여, 시간차가 존재하는 여러 장의 영상을 정렬한 후 같은 위치의 픽셀에 속하는 컬러 값을 큐에 저장한다. 정렬 오류가 발생하거나, 움직이는 물체가 존재하는 경우 큐에 저장된 컬러 값의 차이가 커지게 되고 이러한 부분은 다시 투영하여 파노라마 결과 영상에서 오류를 보정하게 된다. 또한 정렬 오류를 최대한 보정하기 위하여 두 단계로 이루어진 블렌딩 방법을 제안한다. 제안하는 방법은 실시간으로 동작하연서 정렬 오류가 발생한 부분을 효과적으로 판별하여 기존의 방법에 비하여 정렬 오류가 줄어듦을 확인하였다.
편대비행위성을 이용하여 우주간섭계 영상시스템을 구현하였을때 위성의 배치에 따른 점분포함수(Point Spread Function, PSF)를 계산하고 관측될 영상을 예측하여 편대비행위성 간섭계 관측시스템의 예상되는 성능을 분석하였다. 적외선과 가시광 영역에서 관측하는 경우에 대하여 단일구경과 합성구경 관측시스템의 점분포함수를 계산하고 이에 해당되는 예측 영상의 해상도를 비교하였을 때, 합성구경으로 관측 시 더 높은 해상도를 보이는 것을 확인하였다. 또한 편대비행 위성을 이용하여 합성구경 관측을 하는 경우에 대하여 단순한 원형 배열뿐만 아니라 간섭계 관측에 유리한 골레이(Golay) 배열 등 다양한 위성 배치에 따른 점분포함수를 구하고 비교하여 위성 배치에 따른 간섭계관측 시스템의 성능 차이를 분석하였다. 이 결과를 통하여 실제 편대비행위성을 이용하여 간섭계 관측시스템을 구현할 때, 관측시스템을 구성하는 편대 위성의 개수와 배치를 효율적으로 결정할 수 있는 토대를 마련하였다.
본 논문에서는 기존의 연구를 극복하여 단일 영상이 아닌 단안 비디오로부터 5D 라이트필드 영상을 합성하는 딥러닝 프레임워크를 제안한다. 현재 일반적으로 사용 가능한 Lytro Illum 카메라 등은 초당 3프레임의 비디오만을 취득할 수 있기 때문에 학습용 데이터로 사용하기에 어려움이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 가상 환경 데이터를 구성하며 이를 위해 UnrealCV를 활용하여 사실적 그래픽 렌더링에 의한 데이터를 취득하고 이를 학습에 사용한다. 제안하는 딥러닝 프레임워크는 두 개의 입력 단안 비디오에서 $5{\times}5$의 각 SAI(sub-aperture image)를 갖는 라이트필드 비디오를 합성한다. 제안하는 네트워크는 luminance 영상으로 변환된 입력 영상으로부터 appearance flow를 추측하는 플로우 추측 네트워크(flow estimation network), appearance flow로부터 얻어진 두 개의 라이트필드 비디오 프레임 간의 optical flow를 추측하는 광학 플로우 추측 네트워크(optical flow estimation network)로 구성되어있다.
최근 자연어 처리 기술에 대한 중요도가 높아지고, 발전 속도가 빨라지면서, 산업 전반에 걸쳐 챗봇에 대한 수요가 증가하고 있다. 본 논문은 챗봇을 이용한 소셜 매거진 생성 및 배포, 그리고 이를 활용하여 사용자에게 텍스트를 음성으로 변환하여 동영상의 형태로 전달해 주는 시스템을 다루고 있다. 챗봇이 사용자 대화를 수집, 분석하여 상황에 맞는 키워드를 추출하고, 중복 콘텐츠 제거, 텍스트 요약 등 일련의 과정을 거쳐 소셜 매거진을 생성 및 배포하는 서비스와, 매거진의 각 콘텐츠를 구성하는 이미지, 텍스트 정보를 가지고 음성 합성, 자막 생성, 영상 효과 등을 이용하여 영상을 합성하는 서비스에 관한 것이다. 본 논문에서 제안한 시스템에 대한 성능은 실험을 통하여 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.