• Title/Summary/Keyword: 합성곱 신경망

Search Result 539, Processing Time 0.023 seconds

A Study on Sound Timbre Learning Using Convolutional Network (음색 러닝을 위한 합성 곱 신경망 모델 분석)

  • Park, So-Hyun;Ihm, Sun-Young;Park, Young-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.470-471
    • /
    • 2019
  • 서로 다른 음성 데이터 분류를 위한 연구는 많이 진행되고 있지만 개인이 갖고 있는 목소리 또는 각 악기들이 갖고 있는 음색 러닝 연구는 부족한 실정이다. 본 논문에서는 음색 러닝을 위한 합성 곱 신경망 분석 연구를 진행한다. 음색이란 음정과 세기가 같을 경우에도 두 소리를 구분할 수 있는 복합적인 요소이다.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

KG_VCR: A Visual Commonsense Reasoning Model Using Knowledge Graph (KG_VCR: 지식 그래프를 이용하는 영상 기반 상식 추론 모델)

  • Lee, JaeYun;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.3
    • /
    • pp.91-100
    • /
    • 2020
  • Unlike the existing Visual Question Answering(VQA) problems, the new Visual Commonsense Reasoning(VCR) problems require deep common sense reasoning for answering questions: recognizing specific relationship between two objects in the image, presenting the rationale of the answer. In this paper, we propose a novel deep neural network model, KG_VCR, for VCR problems. In addition to make use of visual relations and contextual information between objects extracted from input data (images, natural language questions, and response lists), the KG_VCR also utilizes commonsense knowledge embedding extracted from an external knowledge base called ConceptNet. Specifically the proposed model employs a Graph Convolutional Neural Network(GCN) module to obtain commonsense knowledge embedding from the retrieved ConceptNet knowledge graph. By conducting a series of experiments with the VCR benchmark dataset, we show that the proposed KG_VCR model outperforms both the state of the art(SOTA) VQA model and the R2C VCR model.

Road Surface Damage Detection based on Object Recognition using Fast R-CNN (Fast R-CNN을 이용한 객체 인식 기반의 도로 노면 파손 탐지 기법)

  • Shim, Seungbo;Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.104-113
    • /
    • 2019
  • The road management institute needs lots of cost to repair road surface damage. These damages are inevitable due to natural factors and aging, but maintenance technologies for efficient repair of the broken road are needed. Various technologies have been developed and applied to cope with such a demand. Recently, maintenance technology for road surface damage repair is being developed using image information collected in the form of a black box installed in a vehicle. There are various methods to extract the damaged region, however, we will discuss the image recognition technology of the deep neural network structure that is actively studied recently. In this paper, we introduce a new neural network which can estimate the road damage and its location in the image by region-based convolution neural network algorithm. In order to develop the algorithm, about 600 images were collected through actual driving. Then, learning was carried out and compared with the existing model, we developed a neural network with 10.67% accuracy.

Analyzing Media Bias in News Articles Using RNN and CNN (순환 신경망과 합성곱 신경망을 이용한 뉴스 기사 편향도 분석)

  • Oh, Seungbin;Kim, Hyunmin;Kim, Seungjae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.999-1005
    • /
    • 2020
  • While search portals' 'Portal News' account for the largest portion of aggregated news outlet, its neutrality as an outlet is questionable. This is because news aggregation may lead to prejudiced information consumption by recommending biased news articles. In this paper we introduce a new method of measuring political bias of news articles by using deep learning. It can provide its readers with insights on critical thinking. For this method, we build the dataset for deep learning by analyzing articles' bias from keywords, sourced from the National Assembly proceedings, and assigning bias to said keywords. Based on these data, news article bias is calculated by applying deep learning with a combination of Convolution Neural Network and Recurrent Neural Network. Using this method, 95.6% of sentences are correctly distinguished as either conservative or progressive-biased; on the entire article, the accuracy is 46.0%. This enables analyzing any articles' bias between conservative and progressive unlike previous methods that were limited on article subjects.

Improved Multi-modal Network Using Dilated Convolution Pyramid Pooling (팽창된 합성곱 계층 연산 풀링을 이용한 멀티 모달 네트워크 성능 향상 방법)

  • Park, Jun-Young;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.84-86
    • /
    • 2018
  • 요즘 자율주행과 같은 최신 기술의 발전과 더불어 촬영된 영상 장면에 대한 깊이있는 이해가 필요하게 되었다. 특히, 기계학습 기술이 발전하면서 카메라로 찍은 영상에 대한 의미론적 분할 기술에 대한 연구도 활발히 진행되고 있다. FuseNet은 인코더-디코더 구조를 이용하여 장면 내에 있는 객체에 대한 의미론적 분할 기술을 적용할 수 있는 신경망 모델이다. FuseNet은 오직 RGB 입력을 받는 기존의 FCN보다 깊이정보까지 활용하여 RGB 정보를 기반으로 추출한 특징지도와의 요소합 연산을 통해 멀티 모달 구조를 구현했다. 의미론적 분할 연구에서는 객체의 전역 컨텍스트가 고려되는 것이 중요한데, 이를 위해 여러 계층을 깊게 쌓으면 연산량이 많아지는 단점이 있다. 이를 극복하기 위해서 기존의 합성곱 방식을 벗어나 새롭게 제안된 팽창 합성곱 연산(Dilated Convolution)을 이용하면 객체의 수용 영역이 효과적으로 넓어지고 연산량이 적어질 수 있다. 본 논문에서는 컨볼루션 연산의 새로운 방법론적 접근 중 하나인 팽창된 합성곱 연산을 이용해 의미론적 분할 연구에서 새로운 멀티 모달 네트워크의 성능 향상 방법을 적용하여 계층을 더 깊게 쌓지 않더라도 파라미터의 증가 없이 해상도를 유지하면서 네트워크의 전체 성능을 향상할 수 있는 최적화된 방법을 제안한다.

  • PDF

Convolutional Neural Network based Vehicle License Plate Recognition System (합성곱 신경망 기반의 차량 번호판 인식 시스템)

  • Im, Sung-Hoon;Lee, Jae-Heung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.749-752
    • /
    • 2018
  • 깊은 신경망 모델을 이용한 차량 번호판 검출과 번호판 문자 인식 시스템을 제안한다. 차량 번호판 인식 시스템은 세 가지 종류의 깊은 신경망 모델로 구성된다. 기존의 영상처리 기반의 차량 번호판 검출과 문자 인식을 전부 신경망으로 대체함으로써 영상의 밝기, 회전, 왜곡 등의 변형에 강인한 성능을 얻을 수 있다. 차량 번호판 검출률은 99.3%, 문자 영역 검출률은 99%, 문자 인식률을 98.5%를 얻었다.

Real-Time Visual Grounding for Natural Language Instructions with Deep Neural Network (심층 신경망을 이용한 자연어 지시의 실시간 시각적 접지)

  • Hwang, Jisu;Kim, Incheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.487-490
    • /
    • 2019
  • 시각과 언어 기반의 이동(VLN)은 3차원 실내 환경에서 실시간 입력 영상과 자연어 지시들을 이해함으로써, 에이전트 스스로 목적지까지 이동해야 하는 인공지능 문제이다. 이 문제는 에이전트의 영상 및 자연어 이해 능력뿐만 아니라, 상황 추론과 행동 계획 능력도 함께 요구하는 복합 지능 문제이다. 본 논문에서는 시각과 언어 기반의 이동(VLN) 작업을 위한 새로운 심층 신경망 모델을 제안한다. 제안모델에서는 입력 영상에서 합성곱 신경망을 통해 추출하는 시각적 특징과 자연어 지시에서 순환 신경망을 통해 추출하는 언어적 특징 외에, 자연어 지시에서 언급하는 장소와 랜드마크 물체들을 영상에서 별도로 탐지해내고 이들을 추가적으로 행동 선택을 위한 특징들로 이용한다. 다양한 3차원 실내 환경들을 제공하는 Matterport3D 시뮬레이터와 Room-to-Room(R2R) 벤치마크 데이터 집합을 이용한 실험들을 통해, 본 논문에서 제안하는 모델의 높은 성능과 효과를 확인할 수 있었다.

A Study on Learning Performance Improvement by Using Hidden States in Deep Reinforcement Learning (심층강화학습에 은닉 상태 정보 활용을 통한 학습 성능 개선에 대한 고찰)

  • Choi, Yohan;Seok, Yeong-Jun;Kim, Ju-Bong;Han, Youn-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.528-530
    • /
    • 2022
  • 심층강화학습에 완전 연결 신경망과 합성곱 신경망은 잘 활용되는 것에 반해 순환 신경망은 잘 활용되지 않는다. 이는 강화학습이 마르코프 속성을 전제로 하기 때문이다. 지금까지의 강화학습은 환경이 마르코프 속성을 만족하도록 사전 작업이 필요했다, 본 논문에서는 마르코프 속성을 따르지 않는 환경에서 이러한 사전 작업 없이도 순환 신경망의 은닉 상태를 통해 마르코프 속성을 학습함으로써 학습 성능을 개선할 수 있다는 것을 소개한다.