• 제목/요약/키워드: 합성곱 신경망 모델

검색결과 312건 처리시간 0.027초

Spectral Pooling: DFT 기반 풀링 계층이 보여주는 여러 가능성에 대한 연구 (Spectral Pooling: A study on the various possibilities of the DFT-based Pooling layer)

  • 이성주;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.87-90
    • /
    • 2020
  • GPU의 발전과 함께 성장한 딥러닝(Deep Learning)은 영상 분류 문제에서 최고의 성능을 보이고 있다. 그러나 합성곱 신경망 기반의 모델을 깊게 쌓음에 따라 신경망의 표현력이 좋아짐과 동시에 때로는 학습이 잘되지 않고 성능이 저하되는 등의 부작용도 등장했다. 성능 향상을 방해하는 주요 요인 중 하나는, 차원감소 목적에 따라 필연적으로 정보 손실을 겪어야 하는 풀링 계층에 있다. 따라서 특성맵(Feature map)의 차원감소를 통해 얻게 되는 비용적 이득과 모델의 분류 성능 사이의 취사선택(Trade-off)이 존재한다. 그리고 이로부터 자유로워지기 위한 다양한 연구와 기법이 존재하는데 Spectral Pooling도 이 중 하나이다. 본 논문에서는 이산 푸리에 변환(Discrete Fourier Transform, DFT)을 이용한 Spectral Pooling에 대한 소개와, 해당 풀링의 성질을 통상적으로 사용되고 있는 Max Pooling과의 성능 비교를 통해 분석한다. 또한 영상 내 고주파수 부분에서 특히 더 강건하지 못하다는 맥스 풀링의 고질적인 문제점을, Spectral Pooling과의 하이브리드(Hybrid) 구조를 통해 어떻게 극복해나갈 것인지 그 가능성을 중심으로 실험을 수행했다.

  • PDF

딥러닝 기반 합성곱 신경망을 이용한 자동 침수감지 기술에 관한 연구 (A Study on Inundation Detection Using Convolutional Neural Network Based on Deep Learning)

  • 김길호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.323-323
    • /
    • 2021
  • 본 연구는 국지적으로 발생하는 침수상황을 빠르게 감지하고 대처하기 위하여 다채널 실시간 CCTV 영상을 무인 모니터링하고 자동으로 감지하기 위한 영상분석 기술을 개발하는 것을 목적으로 한다. 이에 다양한 공간에서 촬영된 학습 및 검증을 위한 데이터를 구축하였고, 대표적인 CNN 계열 분류모델을 중심으로 딥러닝 모델을 개발하였다. 5가지 CNN 알고리즘으로 시험결과, ResNet-50 모델의 분류 정확도가 87.5%로 가장 우수한 성능을 보였다. 공간적으로는 실외, 도로공간에서 82% 이상의 분류성능을 보였고, 실내공간에서는 양질의 학습데이터 부족으로 분류성능이 떨어지는 것으로 나타났다. 본 연구성과는 지능형 CCTV 기술 발전과 방재 목적의 다목적 활용으로, 향후 홍수피해 저감을 위한 보조적인 수단으로 활용되길 기대한다.

  • PDF

이미지 저작권 판별을 위한 기계학습 적용과 분석 (Application and Analysis of Machine Learning for Discriminating Image Copyright)

  • 김수인;이상우;김학희;김원겸;황두성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.899-902
    • /
    • 2021
  • 본 논문은 이미지 저작권 유무 판별을 분류 문제로 정의하고 기계학습과 합성곱 신경망 모델을 적용하여 해결한다. 학습을 위해 입력 데이터를 고정된 크기로 변환하고 정규화 과정을 수행하여 학습 데이터셋을 준비한다. 저작권 유무 판별 실험에서 SVM, k-NN, 랜덤포레스트, VGG-Net 모델의 분류 성능을 비교 분석한다. VGG-Net C 모델의 결과가 다른 알고리즘과 비교 시 10.65% 높은 성능을 나타냈으며 배치 정규화 층을 이용하여 과적합 현상을 개선했다.

이미지에 대한 비전 트랜스포머(ViT) 기반 딥 클러스터링 (Deep Clustering Based on Vision Transformer(ViT) for Images)

  • 신혜수;유사라;이기용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.363-365
    • /
    • 2023
  • 본 논문에서는 어텐션(Attention) 메커니즘을 이미지 처리에 적용한 연구가 진행되면서 등장한 비전 트랜스포머 (Vision Transformer, ViT)의 한계를 극복하기 위해 ViT 기반의 딥 클러스터링(Deep Clustering) 기법을 제안한다. ViT는 완전히 트랜스포머(Transformer)만을 사용하여 입력 이미지의 패치(patch)들을 벡터로 변환하여 학습하는 모델로, 합성곱 신경망(Convolutional Neural Network, CNN)을 사용하지 않으므로 입력 이미지의 크기에 대한 제한이 없으며 높은 성능을 보인다. 그러나 작은 데이터셋에서는 학습이 어렵다는 단점이 있다. 제안하는 딥 클러스터링 기법은 처음에는 입력 이미지를 임베딩 모델에 통과시켜 임베딩 벡터를 추출하여 클러스터링을 수행한 뒤, 클러스터링 결과를 임베딩 벡터에 반영하도록 업데이트하여 클러스터링을 개선하고, 이를 반복하는 방식이다. 이를 통해 ViT 모델의 일반적인 패턴 파악 능력을 개선하고 더욱 정확한 클러스터링 결과를 얻을 수 있다는 것을 실험을 통해 확인하였다.

딥러닝 기반 손 제스처 인식을 통한 3D 가상현실 게임 (3D Virtual Reality Game with Deep Learning-based Hand Gesture Recognition)

  • 이병희;오동한;김태영
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제24권5호
    • /
    • pp.41-48
    • /
    • 2018
  • 가상 환경에서 몰입감을 높이고 자유로운 상호작용을 제공하기 위한 가장 자연스러운 방법은 사용자의 손을 이용한 제스처 인터페이스를 제공하는 것이다. 그러나 손 제스처 인식에 관한 기존의 연구들은 특화된 센서나 장비를 요구하거나 낮은 인식률을 보이는 단점이 있다. 본 논문은 손 제스처 입력을 위한 RGB 카메라 이외 별도 센서나 장비 없이 손 제스처 인식이 가능한 3차원 DenseNet 합성곱 신경망 모델을 제안하고 이를 기반으로 한 가상현실 게임을 소개한다. 4개의 정적 손 제스처와 6개의 동적 손 제스처 인터페이스에 대해 실험한 결과 평균 50ms의 속도로 94.2%의 인식률을 보여 가상현실 게임의 실시간 사용자 인터페이스로 사용 가능함을 알 수 있었다. 본 연구의 결과는 게임 뿐 아니라 교육, 의료, 쇼핑 등 다양한 분야에서 손 제스처 인터페이스로 활용될 수 있다.

심층 CNN을 활용한 영상 분위기 분류 및 이를 활용한 동영상 자동 생성 (Image Mood Classification Using Deep CNN and Its Application to Automatic Video Generation)

  • 조동희;남용욱;이현창;김용혁
    • 한국융합학회논문지
    • /
    • 제10권9호
    • /
    • pp.23-29
    • /
    • 2019
  • 본 연구에서는 영상의 분위기를 심층 합성곱 신경망을 통해 8 가지로 분류하고, 이에 맞는 배경 음악을 적용하여 동영상을 자동적으로 생성하였다. 수집된 이미지 데이터를 바탕으로 다층퍼셉트론을 사용하여 분류 모델을 학습한다. 이를 활용하여 다중 클래스 분류를 통해 동영상 생성에 사용할 이미지의 분위기를 예측하며, 미리 분류된 음악을 매칭시켜 동영상을 생성한다. 10겹 교차 검증의 결과, 72.4%의 정확도를 얻을 수 있었고, 실제 영상에 대한 실험에서 64%의 오차 행렬 정확도를 얻을 수 있었다. 오답의 경우, 주변의 비슷한 분위기로 분류하여 동영상에서 나오는 음악과 크게 위화감이 없음을 확인하였다.

CNN 을 이용한 동전 분류 (Coin Classification using CNN)

  • 이재현;신동규;박이준;송현주;구본근
    • Journal of Platform Technology
    • /
    • 제9권3호
    • /
    • pp.63-69
    • /
    • 2021
  • 각국에서 통용되는 동전 제작에 사용되는 제한된 종류의 재질과 동전의 휴대성 등을 고려한 디자인은 각국의 통화가 달라도 동전의 모양, 크기, 색상을 비슷하게 하였다. 이로 인해 여러 국가를 방문하는 사람은 비슷한 모양의 여러 나라 동전을 식별하는 것에 어려움을 겪는다. 이러한 문제를 해결하기 위해 본 논문에서는 이미지 처리에 효과적인 합성곱 신경망(CNN)을 이용한 동전 분류 방법을 제안한다. 동전 분류를 위한 학습 이미지는 웹 크롤링을 이용하여 수집하고, 이미지 전처리를 위해 OpenCV를 사용하였다. 전처리가 완료된 이미지를 대상으로 특징 추출을 위해 세계층의 합성곱 계층을 사용하였고, 분류를 위해 두 계층의 완전연결 신경망을 사용하였다. 본 논문에서 설계한 모델이 동전 분류에 효과가 있음을 보이기 위해 여덟 종류의 동전을 대상으로 시험하였다. 실험 결과에 의하면 동전 분류의 정확도는 약 99.5%이다.

합성곱 신경망과 인코더-디코더 모델들을 이용한 익형의 유체력 계수와 유동장 예측 (Prediction of aerodynamic force coefficients and flow fields of airfoils using CNN and Encoder-Decoder models)

  • 서장훈;윤현식;김민일
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.94-101
    • /
    • 2022
  • The evaluation of the drag and lift as the aerodynamic performance of airfoils is essential. In addition, the analysis of the velocity and pressure fields is needed to support the physical mechanism of the force coefficients of the airfoil. Thus, the present study aims at establishing two different deep learning models to predict force coefficients and flow fields of the airfoil. One is the convolutional neural network (CNN) model to predict drag and lift coefficients of airfoil. Another is the Encoder-Decoder (ED) model to predict pressure distribution and velocity vector field. The images of airfoil section are applied as the input data of both models. Thus, the computational fluid dynamics (CFD) is adopted to form the dataset to training and test of both CNN models. The models are established by the convergence performance for the various hyperparameters. The prediction capability of the established CNN model and ED model is evaluated for the various NACA sections by comparing the true results obtained by the CFD, resulting in the high accurate prediction. It is noted that the predicted results near the leading edge, where the velocity has sharp gradient, reveal relatively lower accuracies. Therefore, the more and high resolved dataset are required to improve the highly nonlinear flow fields.

에어포일 공력 성능 예측을 위한 딥러닝 기반 방법론 연구 (Deep learning-based Approach for Prediction of Airfoil Aerodynamic Performance)

  • 천성우;정호진;박민규;정인호;조해성;기영중
    • 항공우주시스템공학회지
    • /
    • 제16권4호
    • /
    • pp.17-27
    • /
    • 2022
  • 본 논문에서는 에어포일의 좌표 데이터에 대해 공력 특성을 예측할 수 있는 합성곱 신경망 기반 네트워크 프레임 워크를 설계하였으며 Xfoil을 이용한 공력 데이터를 적용하여 네트워크의 가능성을 확인하였다. 이 때 에어포일의 두께 변화에 따른 공력 특성 예측을 수행하였다. 부호화 거리 함수를 이용하여 에어포일의 좌표 데이터를 이미지 데이터로 변환하였으며 받음각 정보를 반영하였다. 또한 에어포일의 압력 계수 분포를 축소 모델 기법 중 하나인 적합 직교 분해를 이용하여 축소된 데이터로 표현하였으며 이를 네트워크의 출력 데이터로 사용하였다. 제시하는 네트워크의 내삽과 외삽 성능을 평가하기 위하여 시험 데이터를 구성하였고, 결과적으로 내삽 데이터에 대한 예측 성능이 외삽에 비해 우수함을 확인하였다.

통계 및 이미지 데이터를 활용한 가짜 SNS 계정 식별 기술 (Fake SNS Account Identification Technique Using Statistical and Image Data)

  • 유승연;신영서;방채운;전찬준
    • 스마트미디어저널
    • /
    • 제11권1호
    • /
    • pp.58-66
    • /
    • 2022
  • 인터넷 기술이 발전함에 따라 SNS 사용자가 늘어나고 있다. SNS의 대중화가 진행되면서 소셜 네트워크의 영향력과 익명성을 활용한 SNS형 범죄가 나날이 증가하고 있는 추세이다. 본 논문에서는 인스타그램에서 SNS형 범죄에 주로 이용되는 가짜 계정 분류를 위해 통계 데이터와 이미지 데이터를 이용하여 각각 기계학습 및 딥러닝(deep learning) 기법을 활용한 가짜 계정 분류 방법을 제안한다. 모델 학습에 사용된 SNS 계정 데이터는 자체적으로 수집하였으며, 수집된 데이터는 통계 데이터 및 이미지 데이터에 기반한다. 통계 데이터의 경우에는 기계학습 및 다층 퍼셉트론 기반으로 학습을 진행하였고, 이미지 데이터의 경우에는 합성곱 신경망(Convolutional Neural Network, CNN) 기반으로 학습을 진행하였다. 학습을 진행한 결과 계정 분류에 대하여 정확도가 전반적으로 높게 나온 것을 확인하였다.