Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.127-128
/
2020
본 논문은 딥러닝 네트워크의 압축을 위한 양자화 오프셋의 바이어스 기법을 제안한다. 양자화는 32비트 정밀도를 갖는 가중치와 활성화 데이터를 특정 비트 이하의 정수로 압축한다. 양자화는 원 데이터에 스케일과 오프셋을 더함으로써 수행되므로 오프셋을 위한 합성곱 연산이 추가된다. 본 논문에서는 입력 활성화 데이터의 양자화 오프셋과 가중치의 합성곱의 출력은 바이어스에 임베딩될 수 있음을 보여준다. 이를 통해 추론 과정 중 오프셋의 합성곱 연산을 제거할 수 있다. 실험 결과는 오프셋의 합성곱이 바이어스에 임베딩이 되더라도 영상 분류 정확도에 영향이 거의 없음을 증명한다.
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.429-432
/
2020
본 논문에서는 카메라의 포커싱과 아웃포커싱에 의해 이미지에서 뿌옇게 표현되는 DoF(Depth of field, 피사계 심도) 영역을 합성곱 신경망을 통해 찾는 방법을 제안한다. 우리의 접근 방식은 RGB채널기반의 상호-상관 필터를 이용하여 DoF영역을 이미지로부터 효율적으로 분류하고, 합성곱 신경망 네트워크에 학습하기 위한 데이터를 구축하며, 이렇게 얻어진 데이터를 이용하여 이미지-DoF가중치 맵 데이터 쌍을 설정한다. 학습할 때 사용되는 데이터는 이미지와 상호-상관 필터 기반으로 추출된 DoF 가중치 맵을 이용하며, 네트워크 학습 단계에서 수렴률을 높이기 위해 스무딩을 과정을 한번 더 적용한 결과를 사용한다. 본 논문에서 제안하는 합성곱 신경망은 이미지로부터 포커싱과 아웃포커싱된 DoF영역을 자동으로 추출하는 과정을 학습시키기 위해 사용된다. 테스트 결과로 얻은 DoF 가중치 이미지는 입력 이미지에서 DoF영역을 빠른 시간 내에 찾아내며, 제안하는 방법은 DoF영역을 사용자의 ROI(Region of interest)로 활용하여 NPR렌더링, 객체 검출 등 다양한 곳에 활용이 가능하다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.11a
/
pp.84-86
/
2018
요즘 자율주행과 같은 최신 기술의 발전과 더불어 촬영된 영상 장면에 대한 깊이있는 이해가 필요하게 되었다. 특히, 기계학습 기술이 발전하면서 카메라로 찍은 영상에 대한 의미론적 분할 기술에 대한 연구도 활발히 진행되고 있다. FuseNet은 인코더-디코더 구조를 이용하여 장면 내에 있는 객체에 대한 의미론적 분할 기술을 적용할 수 있는 신경망 모델이다. FuseNet은 오직 RGB 입력을 받는 기존의 FCN보다 깊이정보까지 활용하여 RGB 정보를 기반으로 추출한 특징지도와의 요소합 연산을 통해 멀티 모달 구조를 구현했다. 의미론적 분할 연구에서는 객체의 전역 컨텍스트가 고려되는 것이 중요한데, 이를 위해 여러 계층을 깊게 쌓으면 연산량이 많아지는 단점이 있다. 이를 극복하기 위해서 기존의 합성곱 방식을 벗어나 새롭게 제안된 팽창 합성곱 연산(Dilated Convolution)을 이용하면 객체의 수용 영역이 효과적으로 넓어지고 연산량이 적어질 수 있다. 본 논문에서는 컨볼루션 연산의 새로운 방법론적 접근 중 하나인 팽창된 합성곱 연산을 이용해 의미론적 분할 연구에서 새로운 멀티 모달 네트워크의 성능 향상 방법을 적용하여 계층을 더 깊게 쌓지 않더라도 파라미터의 증가 없이 해상도를 유지하면서 네트워크의 전체 성능을 향상할 수 있는 최적화된 방법을 제안한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.397-399
/
2022
Digit recognition is one of the applications of deep learning, which appears in many fields. CNN network enables us to recognize handwritten digits. Also, It can process various types of data. As we stack more layers in CNN network, we expect more performance improvements. In this paper, we added a convolution layer. as a result, we achieved an accuracy improvement from 76.96% to 98.87%, which is a nearly 21.81% increase.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.468-469
/
2023
실세계 네트워크 데이터에서 노드들 간의 관계는 종종 친구/적 혹은 지지/반대와 같이 대조적인 부호를 갖는다. 이러한 네트워크를 분석하기 위해, 부호가 있는 네트워크 임베딩 (signed network embedding, 이하 SNE) 문제에 대한 관심이 급증하고 있다. 특히, 최근 들어 그래프 합성곱 네트워크 기술을 기반으로 하는 SNE 방법들에 대한 연구가 활발히 수행되어 오고 있다. 본 논문에서는, 부호가 있는 네트워크의 희소성 정도가 기존 SNE 방법들의 성능에 어떻게 영향을 미치는 지에 대해 분석하고자 한다. 4 개의 실세계 데이터 집합들을 이용한 실험을 통해, 우리는 기존 방법들의 부호 예측 정확도가 희소한 네트워크들에서는 상당히 감소하는 것을 확인하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2021.01a
/
pp.257-260
/
2021
본 논문에서는 카메라의 포커싱과 아웃포커싱에 의해 이미지에서 뿌옇게 표현되는 DoF(Depth of field, 피사계 심도) 영역을 쿼드트리(Quadtree) 기반의 합성곱 신경망을 통해 빠르게 찾는 방법을 제안한다. 우리의 접근 방식은 RGB채널기반의 상호-상관 필터를 이용하여 DoF영역을 이미지로부터 효율적으로 분류하고, 적응형 트리인 쿼드트리를 기반으로 유의미한 영역만을 분류한다. 이 과정에서 손실 없이 온전하게 DoF영역을 추출하기 위한 필터링 과정을 거친다. 이러한 과정에서 얻어진 이미지 패치들은 전체 이미지에 비해 적은 영역으로 나타나며, 이 적은 개수의 패치들을 이용하여 네트워크 단계에서 사용할 이미지-DoF가중치 맵 데이터 쌍을 설정한다. 네트워크 과정에서 학습할 때 사용되는 데이터는 이미지와 상호-상관 필터 기반으로 추출된 DoF 가중치 맵을 이용한다. 본 논문에서 제안하는 쿼드트리 기반 합성곱 신경망은 이미지로부터 포커싱과 아웃포커싱된 DoF영역을 자동으로 추출하는 과정을 학습시키기 위해 사용된다. 결과적으로 학습에 필요한 데이터 영역이 줄어듦으로써 학습 시간과 메모리를 절약했으며, 테스트 결과로 얻은 DoF 가중치 이미지는 입력 이미지에서 DoF영역을 더욱더 빠른 시간 내에 찾아낸다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.176-179
/
2021
최근 딥 러닝 기법의 하나인 합성곱 신경망(Convolutional Neural Network, CNN)은 영상 잡음(Noise) 제거 분야에서 전통적인 기법보다 좋은 성능을 나타내고 있지만 학습하는 과정에서 영상 내 디테일한 부분이 손실될 수 있다. 본 논문에서는 웨이블릿 변환(Wavelet Transform)을 기반으로 영상 내 디테일 정보도 같이 학습하여 영상 디테일을 향상하는 잡음 제거 합성곱 신경망 네트워크를 제안한다. 제안하는 네트워크는 디테일 향상 서브 네트워크(Detail Enhancement Subnetwork)와 영상 잡음 추출 서브 네트워크(Noise Extraction Subnetwork)를 이용하게 된다. 실험을 통해 제안하는 방법은 기존 알고리듬보다 디테일 손실 문제를 효과적으로 해결할 수 있었고 객관적 품질 평가인 PSNR(Peak Signal-to-Noise Ratio)와 주관적 품질 비교에서 모두 우수한 결과가 나온 것을 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.736-738
/
2018
최근 딥러닝의 발전에 따라 무인감시, CCTV 등 영상감시 시스템도 지능화되고 있다. 하지만 쓰레기 무단투기 감시는 여전히 관리자가 실시간으로 CCTV 영상을 관제하는 형태로 이루어지고 있다. 이러한 문제를 해결하기 위해 본 논문에서는 CCTV 영상에서 쓰레기 무단투기를 검출하는 방법을 제안하며 검출 방법으로 차 영상과 합성곱 신경망을 이용한다. 실험은 합성곱 신경망에서의 쓰레기봉투 분류 문제 위주로 진행하였다. 합성곱 신경망의 네트워크는 Inception v3를 사용하였으며 실험 결과, 약 99.52%의 쓰레기봉투 분류율을 얻을 수 있었다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.4
/
pp.501-507
/
2020
This paper proposes a new frame synchronization technique based on convolutional neural network (CNN). The conventional frame synchronizers usually find the matching instance through correlation between the received signal and the preamble. The proposed method converts the 1-dimensional correlator ouput into a 2-dimensional matrix. The 2-dimensional matrix is input to a convolutional neural network, and the convolutional neural network finds the frame arrival time. Specifically, in additive white gaussian noise (AWGN) environments, the received signals are generated with random arrival times and they are used for training data of the CNN. Through computer simulation, the false detection probabilities in various signal-to-noise ratios are investigated and compared between the proposed CNN-based technique and the conventional one. According to the results, the proposed technique shows 2dB better performance than the conventional method.
Although the performance of cameras is gradually improving now, there are noise in the acquired digital images from the camera, which acts as an obstacle to obtaining high-resolution images. Traditionally, a filtering method has been used for denoising, and a convolutional neural network (CNN), one of the deep learning techniques, has been showing better performance than traditional methods in the field of image denoising, but the details in images could be lost during the learning process. In this paper, we present a CNN for image denoising, which improves image details by learning the details of the image based on wavelet transform. The proposed network uses two subnetworks for detail enhancement and noise extraction. The experiment was conducted through Gaussian noise and real-world noise, we confirmed that our proposed method was able to solve the detail loss problem more effectively than conventional algorithms, and we verified that both objective quality evaluation and subjective quality comparison showed excellent results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.