• 제목/요약/키워드: 함평분지

검색결과 8건 처리시간 0.029초

부여분지와 함평분지에 분포하는 백악기 암석에 대한 자기특성 연구 (Magnetic Characterization of the Cretaceous Rocks from the Buyeo and Hampyeong Basins)

  • 홍준표;석동우;도성재
    • 자원환경지질
    • /
    • 제40권2호
    • /
    • pp.191-207
    • /
    • 2007
  • 경상분지 이외의 지역에 분포하는 백악기 암석에 대한 특성잔류자화 방향을 이해하기 위하여 한반도 남서부에 분포하는 부여분지와 함평분지의 백악기 암석에 대한 고지자기 연구를 수행하였다. 부여분지에 분포하는 퇴적암의 고지 자기 방향은 경사보정전의 방향$(D/I=356.5^{\circ}/61.5^{\circ},\;k=39.3\;\alpha_{95}=7.4^{\circ})$은 경사보정후의 방향$(D/I=25.0^{\circ}/60.6^{\circ},\;k=22.4,\;\alpha_{95}=9.9^{\circ})$보다 더 집중됨으로 습곡 이후 재자화된 것으로 볼 수 있으나, 경사보정후의 방향의 정밀도(k)와 신뢰도$(\alpha_{95})$ 경사보정 전의 값과 비교하여 신뢰할 수 있는 통계학적으로 여전히 양호한 값이며 경사보정 후의 극의 위치가 한반도 백악기의 극의 위치와 유사한 점 때문에 부여분지의 재자화 여부의 결정은 유보하였다. 경사보정 전의 고지자기극의 위치는 $(Lat./Long.=81.6^{\circ}N/106.9^{\circ}E,\;K=25.1\;A_{95}=9.3^{\circ})$는 유라시아 제3기의 고지자기 극과 유사하며, 경사보정 후의 고지자기극은 $(Lat./Long.=69.3^{\circ}N/186.7^{\circ}E,\;K=11.6\;A_{95}=14.0^{\circ})$로 한반도 후기 백악기의 극과 유사하다. 함평분지 퇴적암의 특성잔류자화 방향은 경사보정 후의 방향$D/I=32.5^{\circ}/55.4^{\circ},\;(k=35.6,\;\alpha_{95}=8.7^{\circ})$이 경사보정 전의 방향$D/I=18.3^{\circ}/62.5^{\circ},\;k=14.1,\;\alpha_{95}=14.2^{\circ})$보다 더 집중된다. 경사보정 후의 방향으로부터 계산된 고지자기극의 위치는 $Lat./Long.=63.9^{\circ}N/202.7^{\circ}E,\;(K=21.3,\;A_{95}=7.6^{\circ})$로 한반도 후기 백악기의 고지자기극$(Lat./Long.=70.9^{\circ}N/215.4^{\circ}E,\;A_{95}=5.3^{\circ})$의 위치와 유사하므로 암석의 생성 시기는 후기 백악기로 판단하였다. 한편 함평분지에 분포하는 백악기 화산암류에서는 한 개의 정자화 방향과 두 개의 역자화 방향이 확인되었다. 이들 특성잔류자화 방향은 백악기 화산암 형성 당시 암석에 기록된 성분으로써 당시 지구자기장의 상태를 기록한 것으로 해석하였으며, 이중 정자화 방향을 함평분지 화산암의 대표 방향으로 채택하였다 함평분지 화산암의 고지자기 극의 위치는 정자극의 경우는 $Lat./Long.=70.2^{\circ}N/199.5^{\circ}E,\;(K=18.1,\;A_{95}=9.6^{\circ})$ 이며 역자극의 경우는 $Lat./Long.=65.5^{\circ}S/251.3^{\circ}E,\;(K=7.1,\;A_{95}=20.7^{\circ})$이다. 이중 정자극의 위치는 한반도의 후기 백악기극의 위치와 통계적으로 동일한 것으로 나타나 함평분지 화산암의 형성 시기를 후기 백악기로 해석하였다.

한반도 남서부 중생대 백악기 함평퇴적분지의 고퇴적환경연구 (Palaeodepositional Environment of the Cretaceous Hampyeong Basin, Southwestern Korea)

  • 유환수;;고영구;윤석태;김주용;김해경;정철환;류상옥
    • 한국지구과학회지
    • /
    • 제21권6호
    • /
    • pp.683-694
    • /
    • 2000
  • 중생대 백악기 함평분지의 고퇴적환경과 지질연대를 지화학, 암상 분포, 퇴적암석학 그리고 고식물학 측면에서 재고찰을 시도하였다. 연구 결과는 함평분지가 하성과 호성층으로 구성된 구조적으로 활동적인 분지였음을 시사한다. 이 분지에서는 주변 지형과 관련되어 분명한 환경 변화를 시사하는 산성응회암류, 흑색 셰일/사암상, 적색층, 응회암질 역암을 포함하는 중성응회암류 등 4가지 암상이 인지되었다. 구조적 운동에 수반하여 일어난 화산활동이 이들 퇴적층을 형성시킨 퇴적물을 주로 제공하였을 것이다. 이들 퇴적층들은 인접한 해남분지와 잘 대비된다. 그리고 화산성 기원의 퇴적물들은 유천층군에 해당하는 능주층의 경우와 유사하다. 분지 내에서 흑색 셰일의 광역적인 분포는 혐기성 환경 하에서 퇴적이 이루어졌음을 지시한다. 이들 암층에 있어서의 유기탄소의 함량(0.81%에서 1.75%)은 석유근원 셰일의 평균치 정도로 나타났다. 식물화석은 흑색셰일과 사암에서 산출된다. Platanoid류 잎 화석의 산출은 이들 퇴적층이 Oishi의 피자식물 계열 지층에 해당하며 시대상 Aptian/Albian 또는 보다 신기 지층임을 시사한다.

  • PDF

이동 객체 위치 예측 시스템을 위한 효율적인 미래 인덱싱 기법 (An Efficient Future Indexing Technique for the Moving Object Location Prediction System)

  • 이강준;김정준;한기준
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2007년도 GIS 공동춘계학술대회 논문집
    • /
    • pp.3-8
    • /
    • 2007
  • 최근 도로 네트워크 환경에서 이동 객체 위치 정보를 관리하고 이동 객체의 미래 위치를 예측하는 이동 객체 위치 예측 시스템의 필요성이 나날이 증가되고 있다. 이동 객체위치 예측 시스템은 교통 관제 및 다양한 응급 상황 시 이동 객체의 미래 위치를 신속히 예측하기 위해 사용되며, 보다 편리한 위치 기반 서비스의 제공을 가능하게 해준다. 이러한 시스템을 위한 대부분의 미래 인덱싱 기법은 일반적으로 이동 객체의 미래 위치 예측을 위해 과거 이동 궤적을 이용하고 있다. 그러나, 수많은 이동 객체의 과거 이동 궤적 관리가 어렵고, 실시간으로 변화하는 이동 객체의 미래 궤적을 반영하기 위한 방대한 미래 인덱스의 갱신 요청으로 인해 인덱스 유지 비용이 증가하여 미래 위치 질의 요청에 대한 신속한 처리 성능이 떨어지게 된다. 따라서 본 논문에서는 이동 객체 위치 예측 시스템에서 방대한 이동 객체의 과거 이동 궤적으로부터 효율적으로 미래 위치를 예측하기 위해 셀 기반의 미래 인덱싱 방법인 PFCT-Tree(Probability Future Cell Trajectory-Tree)를 제시한다. PFCT-Tree는 방대한 과거 이동 궤적을 셀 단위로 재구성하여 인덱스 크기를 줄이고, 셀 내부 경험치를 기반으로 장기간 질의 시 빠른 미래 위치를 예측할 수 있다. 또한 신속한 미래 이동 궤적의 갱신 속도를 향상시키기 위해 미래 시간을 미래 궤적과 분리하여 인덱싱함으로써 위치 예측 오류로 인한 미래 인덱스 갱신 비용을 최소화 할 수 있다. 마지막으로 실험을 통해 도로 네트워크 환경에서 PFCT-Tree가 기존 인덱싱 기법들보다 갱신 및 검색 성능이 우수함도 입증하였다.ential oil (Bergamot, Grapefruit, Lemon, Petigrain)은 농도 의존적으로 ROS 생성을 증가시켰다. 이상의 결과를 종합하여 볼 때 citrus essential oil은 MSH에 의한 melanin 생성을 억제하는 것으로 보아 미백제로서의 개발 가능성이 있는 것으로 사료된다.가 사용될 수 있음을 제시한다.찍 발견되어 크기는 작았으며, 육안적으로 폴립의 Yamada 형태의 분류는 II, III의 형태를 띠고 있었다.EX>로 한반도 후기 백악기의 고지자기극$(Lat./Long.=70.9^{\circ}N/215.4^{\circ}E,\;A_{95}=5.3^{\circ})$의 위치와 유사하므로 암석의 생성 시기는 후기 백악기로 판단하였다. 한편 함평분지에 분포하는 백악기 화산암류에서는 한 개의 정자화 방향과 두 개의 역자화 방향이 확인되었다. 이들 특성잔류자화 방향은 백악기 화산암 형성 당시 암석에 기록된 성분으로써 당시 지구자기장의 상태를 기록한 것으로 해석하였으며, 이중 정자화 방향을 함평분지 화산암의 대표 방향으로 채택하였다 함평분지 화산암의 고지자기 극의 위치는 정자극의 경우는 $Lat./Long.=70.2^{\circ}N/199.5^{\circ}E,\;(K=18.1,\;A_{95}=9.6^{\circ})$ 이며 역자극의 경우는 $Lat./Long.=65.5^{\circ}S/251.3^{\circ}E,\;(K=7.1,\;A_{95}=20.7^{\circ})$이다. 이중 정자극의 위치는 한반도의 후기 백악기극의 위치와 통계적으로 동일한 것으로 나타나 함평분지 화산암

  • PDF

한국 서남해 함평만 조간대 퇴적층의 제4기 후기 층서 연구 (Late Quaternary Stratigraphy of the Tidal Deposits In the Hampyung Bay, southwest coast of Korea)

  • 박용안;임동일;최진용;이영길
    • 한국해양학회지:바다
    • /
    • 제2권2호
    • /
    • pp.138-150
    • /
    • 1997
  • 한반도 서남 해역에 위치한 함평만(전라남도 함평군) 조간대 퇴적층의 제 4기 후기 층서와 퇴적학적 연구를 위하여 총 37 지점에서 평균 3 m 깊이(최대 5.2 m)의 시추가 실시되었다. 채취된 퇴적물 시료의 입자 조직(grain texture), 퇴적 구조(sedimentary structure), 색(color) 및 광물 조성(mineral composition) 등을 토대로 10개의 퇴적상(sedimentary facies)이 분류되었다. 분석 결과에 의하면, 함평만 조간대 퇴적분지의 층서는 상위로부터 순차적으로 층서단위 Unit I, Unit II 및 Unit III로 구성된다. 최상위의 층서단위 Unit I은 조립질 퇴적상인 비조직 사질역 퇴적상(Facies SGd)과 괴상 역질 이토 퇴적상(Facies GMm) 또는 세립질 퇴적상인 엽층리 실트 퇴적상(Facies Zp), 괴상 이토 퇴적상(Facies Mm) 및 평행 엽층리 이토 퇴적상(Facies Mp)으로 구성되며, 상향 조립화의 특정을 나타낸다. 이 퇴적층은 해수면이 거의 현재의 위치에 도달된 지난 약 4.000년 동안 형성된 후기 현세(late Holocene) 해침 퇴적층으로 해석된다. Unit I에 의하여 부정합적으로 피복되는 층서단위 Unit II는 준 고화된 황색 이토 퇴적상 (Facies Mym)과 회색의 미고결된 니질 퇴적상(Facies Mgm)으로 구성되며, 수평적 연속성이 양호하고, 함평만 전체에 광역적으로 분포한다. Unit II는 서해의 여러 조간대에서 보고된 간월도층과 대비되는 것으로 여겨지며, 후기 플라이스토세(late Pleistocene)의 조간대 퇴적환경에서 집적된 퇴적층으로 해석된다. 이러한 Unit II에는 지난 최대 빙하기 동안 대기중에 노출된 다양한 증거(황갈색, 고화상태, 동토구조, 점토광물의 함량 변화등) 들을 함유한다. Unit II에 의하여 부정합적으로 피복되는 Unit III는 역질의 층리를 갖는 조립의 퇴적물(Facies SGb와 Facies Sx)로 구성되며 내만역의 한정된 지역(후동과 시목동 해역)에 분포한다. 퇴적학적 특성과 지역적인 분포 양상을 고려할 때, Unit III는 육성 환경(nonmarine deposits)의 하천 퇴적물(fluvial sediment)로 해석된다. 결과적으로 함평만 조간대 퇴적분지의 층서(최고기로부터 최신기)는 기반암 지층(중생대 화강암)${\rightarrow}$육성 퇴적층(Unit III)${\rightarrow}$후기 플라이스토세의 니질 조간대 퇴적층(Unit II)${\rightarrow}$후기 현세의 조간대 퇴적층(Unit I)의 층서이며, 각각의 층서단위의 경계는 부정합적이다.

  • PDF

무안 지역, 삼보 광상의 금광화작용 (Hydrothermal Gold Mineralization of the Sambo Deposit in the Muan Area, Korea)

  • 박상준;최선규
    • 자원환경지질
    • /
    • 제41권3호
    • /
    • pp.275-286
    • /
    • 2008
  • 백악기 함평분지 서측에 위치하는 삼보광상은 유문암내에 배태되는 $N10{\sim}20W$ 주향의 함금석영세맥(지자맥)과 선캠브리아기의 편마암 열극을 충진하는 NE 계열의 석영맥(풍자맥.광산맥.풍자지맥)으로 구성된다. 함금석영세맥은 주로 유문암의 미세 열극 따라 단속적인 불규칙상 세맥으로 배태되며, 에렉트럼은 미세 열극을 따라 모암내에서 산점 분포하거나, 세맥내 황철석의 용식 공간에서 정출하는 적철석과 밀접히 공생한다. 함금석영세맥의 광화유체($H_2O/-NaCl$ 계)는 $340{\sim}200^{\circ}C$의 균일화온도 및 <2.7 eq. wt.% NaCl의 염농도를 보인다. 반면 NE 석영맥의 유체($H_2O-NaCl/-CO_2$계)는 $400{\sim}190^{\circ}C$의 균일화 온도 및 <7.9 eq. wt.% NaCl의 염농도를 보인다. 이 두 유체계는 서로 다른 물리화학적 조건을 보이는 반면 공통적으로 초기 비등 이후 혼입의 유체 진화 과정을 보인다. 삼보광상은 백악기 인리형 분지와 관련된 NNW 방향의 인장성 열극 형성과 밀접한 관련을 보이며 각맥별 광화작용은 서로 다른 기원의 광화유체에 의해 진행되었다. 삼보광상에서 산출되는 석영맥, 광석광물, 광화유체에 대한 연구를 종합적으로 검토한 결과 삼보광상의 금광화작용은 성인적으로 백악기 지구조운동에 의한 인리형 분지 형성과 관련된 인장형 열극을 충진한 천열수 광상으로 해석된다.

함평만의 간석지 해안지형의 변화 (The Changing Process of the Tidal Landforms in Hampyeung Bay, Southwest Korea)

  • 김남신;이민부
    • 한국지형학회지
    • /
    • 제18권4호
    • /
    • pp.223-233
    • /
    • 2011
  • 본 연구는 함평만의 간석지 해안지형의 분포특징과 그 변화과정이다. 함평만은 하천의 유입이 없는 분지형태와 같은 반폐쇄형 만으로, 외해 만 입구는 좁고, 내해로 가면서 넓어지는 형태이다. 이곳의 퇴적물 공급원은 조류와 연안사면에서 이동된 물질이다. 연구지역의 주요 지형요소는 간석지, 갯골, 조간대사주, 해식애, 해안단구 등이다. 간석지형은 입도조성에 따라 뻘 간석지, 사질혼성 간석지로 분류되었다. 뻘 간석지는 갯벌이 간석지와 연속성을 보이며 완만히 이어지는 해안지역에, 그리고 사질혼성 간석지는 해식애와 해안단구 기저 지역에 발달하였다. 일부 해안 지형에서는 신생대 4기 해수면 변동으로 퇴적된 지층이 확인되었다. 10년간 간석지 입도조성 변화 분석에서 모래는 2%, 실트는 6% 증가하였고, 점토는 9% 감소하였다. 오목형 간석지에는 염생식물이 정착해 있다. 염생식물의 분포 면적 변화는 2001년에 2.4km2에서 2009년에는 9.3km2로 약 4배 확대되었다. 같은 시기 염생식물 분포 지역에서 평균입도는 6.5φ에서 4.5φ로 조립화되는 경향을 보였다.

마이산과 주변 명산의 형성과정과 그에 관련된 산맥과 수계 변화 (The Forming Process of the Maisan and Nearby Famous Mountains and the Related Mountain Ranges and Water Systems)

  • 오창환;이승환;이보영
    • 암석학회지
    • /
    • 제26권3호
    • /
    • pp.201-219
    • /
    • 2017
  • 마이산을 포함한 진안분지는 영남육괴 북쪽 경계 중앙부에 위치하고 있으며 이 지역의 기반암은 고원생대 편마암과 이를 관입한 중생대 화강암으로 백악기 이전에 지표로 노출되었다. 진안분지는 백악기에 영동-광주 단층대를 따라 일어난 좌수향 주향이동단층에 의해 형성된 인리형 분지이며 마이산은 진안분지 내의 경사가 급했던 분지 동쪽 경계부에 퇴적된 역암으로 구성된 산이다. 마이산 봉우리는 말 귀의 형상을 보이며 역암 절벽에 타포니가 발달한 특이한 지형을 보여주고 있다. 진안분지를 형성시킨 단층은 지하 깊은 곳까지 연결됨으로서 200 km 깊이에서 형성된 마그마가 지표로 분출하여 진안분지 내와 그 주변에 활발한 화산 활동을 일으켰다. 그 결과 마이산 주변에는 화산폭발에 의해 형성된 화산쇄설암으로 구성된 천반산, 화산분출시 마그마가 관입한 암경으로 구성된 구봉산 그리고 화산 분출시 분출되어 흐른 용암에 의해 형성된 운일암 반일암등이 특이 지형을 형성하며 나타난다. 그리고 진안분지와 주변 화산암이 형성된 이후 진안분지와 그 주변 지역이 융기하여 마이산을 포함한 주변 명산들을 형성하였다. 융기 시기는 정확히 알 수는 없지만 대략 69-38 Ma경으로 추측된다. 이때 추가령에서 무주와 진안을 지나 함평으로 연결되는 노령산맥이 형성되었을 것으로 추정되며, 이로 인해 금강과 섬진강 수계가 나뉘어지고 갈라진 수계에 의해 쉬리의 종이 분화되었다. 또한 북북서 방향으로 발달한 운장산에 의해 금강과 만경-동진강 수계가 나뉘어졌다. 이로 인해 마이산과 그 주변 지역에는 다양한 생태계가 조성되었으며 동시에 마이산에는 특이한 암상과 관련된 다양한 문화, 역사 자원이 존재한다. 따라서 마이산과 주변 지역은 지질유산을 중심으로 생태, 문화, 역사가 잘 어우러진 지질 관광이 성공적으로 개발될 수 있는 지역으로 국가지질공원 및 세계 지질공원으로서의 가능성이 높다.