• Title/Summary/Keyword: 함평분지

Search Result 8, Processing Time 0.025 seconds

Magnetic Characterization of the Cretaceous Rocks from the Buyeo and Hampyeong Basins (부여분지와 함평분지에 분포하는 백악기 암석에 대한 자기특성 연구)

  • Hong, Jun-Pyo;Suk, Dong-Woo;Doh, Seong-Jae
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.191-207
    • /
    • 2007
  • A paleomagnetic investigation for the Cretaceous rocks in the Buyeo and Hampyeong Basins, located out of the Gyeongsang Basin, was carried out in order to elucidate the paleomagnetic directions in conjunction with the formation of the basins. Typical stepwise thermal demagnetization and measurement methods were used to determine the directions of characteristic remanent magnetizations (ChRMs). The mean direction of the sedimentary rocks from the Buyeo Basin after bedding correction $(D/I=356.5^{\circ}/61.5^{\circ},\;k=39.3\;\alpha_{95}=7.4^{\circ})$, is more dispersed than that before bedding correction $(D/I=356.5^{\circ}/61.5^{\circ},\;k=39.3\;\alpha_{95}=7.4^{\circ})$, which suggests that the rocks in the Buyeo Basin were remagnetized. However, the statistics and dispersion of the ChRM directions after bedding correction are still acceptable and the paleomagnetic pole position after tilt correction $(Lat./Long.=69.3^{\circ}N/186.7^{\circ}E,\;K=11.6\;A_{95}=14.0^{\circ})$ is closer to that of the Late Cretaceous pole of the Korean Peninsula. More detailed study is needed to confirm the nature of the remagnetization in the Buyeo Basin. On the other hand, the paleomagnetic pole before bedding correction $(Lat./Long.=81.6^{\circ}N/106.9^{\circ}E,\;K=25.1\;A_{95}=9.3^{\circ})$ is positioned near the paleogene pole of the Eurasian APWP. The mean ChRM direction of the sedimentary rocks from the Hampyeong Basin after bedding correction is $D/I=32.5^{\circ}/55.4^{\circ},\;(k=35.6,\;\alpha_{95}=8.7^{\circ})$. It is more clustered than that before bedding correction $D/I=18.3^{\circ}/62.5^{\circ},\;k=14.1,\;\alpha_{95}=14.2^{\circ})$, indicating that the ChRM was acquired before tilting of the strata. The paleomagnetic pole position of the Cretaceous sedimentary rocks in the Hampyeong Basin, averaged out of site pole positions calculated from the tilt-corrected ChRMs, is $Lat./Long.=63.9^{\circ}N/202.7^{\circ}E,\;(K=21.3,\;A_{95}=7.6^{\circ})$, similar to the Late Cretaceous paleomagnetic pole of the Korean Peninsula $(Lat./Long.=70.9^{\circ}N/215.4^{\circ}E,\;A_{95}=5.3^{\circ})$, suggesting that the Hampyeong Basin has been stable since the Late Cretaceous period. One normal and two reversed ChRM directions are revealed through the measurements of the volcanic rocks from the Hampyeong Basin. Although these normal and reversed directions are not exactly antipodal, it is interpreted that the normal direction is the representative primary direction of the volcanic rocks of the Hampyeong Basin and the mixed polarity is the records of geomagnetic field at the time of the formation of the volcanic rocks. Paleomagnetic poles are at $Lat./Long.=70.2^{\circ}N/199.5^{\circ}E,\;(K=18.1,\;A_{95}=9.6^{\circ})$ for the normal direction, and $Lat./Long.=65.5^{\circ}S/251.3^{\circ}E,\;(K=7.1,\;A_{95}=20.7^{\circ})$ for the reversed direction. Compared with the representative pole positions of the Cretaceous period of the Korean Peninsula, it is concluded that the age of the volcanic rocks in the Hampyeong Basin is of the Late Cretaceous.

Palaeodepositional Environment of the Cretaceous Hampyeong Basin, Southwestern Korea (한반도 남서부 중생대 백악기 함평퇴적분지의 고퇴적환경연구)

  • You, Hoan-Su;Kenrick, Paul;Koh, Yeong-Koo;Yun, Seok-Tai;Kim, Joo-Yong;Kim, Hai-Gyoung;Chung, Chul-Hwan;Ryu, Sang-Ock
    • Journal of the Korean earth science society
    • /
    • v.21 no.6
    • /
    • pp.683-694
    • /
    • 2000
  • Abstrace: The palaeodepositional environment and age of the Cretaceous Hampyeong Basin (southwestern Korea) are reassessed based on new geochemical, lithological, sedimentological, and palaeobotanical data. Results indicate that the Hampyeong Basin was a tectonically active basin comprising predominantly fluvial and lacustrine sediments. Four distinctive facies types have been identified (acidic tuff, black shales/sandstones, red beds, intermediate tuff with tuffaceous conglomerate) and these reflect periods of significant environmental change within the basin and its neighbouring terrains. Volcanism driven by tectonic events provides a source for much of the sediment. The sedimentary sequences compare well with those in the neighbouring Haenam Basin. Sediments of volcanic origin are similar to those of the Neungju Formation of the Yuchon Group. The widespread occurrence of black shales is indicative of extended periods of deposition under anoxic conditions. Measurements of total organic carbon show that the values for the black shales (0.81% to 1.75%) are the average for petroleum source shales. Fossil plants occurred in the black shales and sandstones. The occurrence of platanoid leaves places these sediments in Oishi's angiosperm series, which is consistent with an Aptian/Albian or younger age.

  • PDF

An Efficient Future Indexing Technique for the Moving Object Location Prediction System (이동 객체 위치 예측 시스템을 위한 효율적인 미래 인덱싱 기법)

  • Lee, Kang-Joon;Kim, Joung-Joon;Han, Ki-Joon
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.3-8
    • /
    • 2007
  • 최근 도로 네트워크 환경에서 이동 객체 위치 정보를 관리하고 이동 객체의 미래 위치를 예측하는 이동 객체 위치 예측 시스템의 필요성이 나날이 증가되고 있다. 이동 객체위치 예측 시스템은 교통 관제 및 다양한 응급 상황 시 이동 객체의 미래 위치를 신속히 예측하기 위해 사용되며, 보다 편리한 위치 기반 서비스의 제공을 가능하게 해준다. 이러한 시스템을 위한 대부분의 미래 인덱싱 기법은 일반적으로 이동 객체의 미래 위치 예측을 위해 과거 이동 궤적을 이용하고 있다. 그러나, 수많은 이동 객체의 과거 이동 궤적 관리가 어렵고, 실시간으로 변화하는 이동 객체의 미래 궤적을 반영하기 위한 방대한 미래 인덱스의 갱신 요청으로 인해 인덱스 유지 비용이 증가하여 미래 위치 질의 요청에 대한 신속한 처리 성능이 떨어지게 된다. 따라서 본 논문에서는 이동 객체 위치 예측 시스템에서 방대한 이동 객체의 과거 이동 궤적으로부터 효율적으로 미래 위치를 예측하기 위해 셀 기반의 미래 인덱싱 방법인 PFCT-Tree(Probability Future Cell Trajectory-Tree)를 제시한다. PFCT-Tree는 방대한 과거 이동 궤적을 셀 단위로 재구성하여 인덱스 크기를 줄이고, 셀 내부 경험치를 기반으로 장기간 질의 시 빠른 미래 위치를 예측할 수 있다. 또한 신속한 미래 이동 궤적의 갱신 속도를 향상시키기 위해 미래 시간을 미래 궤적과 분리하여 인덱싱함으로써 위치 예측 오류로 인한 미래 인덱스 갱신 비용을 최소화 할 수 있다. 마지막으로 실험을 통해 도로 네트워크 환경에서 PFCT-Tree가 기존 인덱싱 기법들보다 갱신 및 검색 성능이 우수함도 입증하였다.ential oil (Bergamot, Grapefruit, Lemon, Petigrain)은 농도 의존적으로 ROS 생성을 증가시켰다. 이상의 결과를 종합하여 볼 때 citrus essential oil은 MSH에 의한 melanin 생성을 억제하는 것으로 보아 미백제로서의 개발 가능성이 있는 것으로 사료된다.가 사용될 수 있음을 제시한다.찍 발견되어 크기는 작았으며, 육안적으로 폴립의 Yamada 형태의 분류는 II, III의 형태를 띠고 있었다.EX>로 한반도 후기 백악기의 고지자기극$(Lat./Long.=70.9^{\circ}N/215.4^{\circ}E,\;A_{95}=5.3^{\circ})$의 위치와 유사하므로 암석의 생성 시기는 후기 백악기로 판단하였다. 한편 함평분지에 분포하는 백악기 화산암류에서는 한 개의 정자화 방향과 두 개의 역자화 방향이 확인되었다. 이들 특성잔류자화 방향은 백악기 화산암 형성 당시 암석에 기록된 성분으로써 당시 지구자기장의 상태를 기록한 것으로 해석하였으며, 이중 정자화 방향을 함평분지 화산암의 대표 방향으로 채택하였다 함평분지 화산암의 고지자기 극의 위치는 정자극의 경우는 $Lat./Long.=70.2^{\circ}N/199.5^{\circ}E,\;(K=18.1,\;A_{95}=9.6^{\circ})$ 이며 역자극의 경우는 $Lat./Long.=65.5^{\circ}S/251.3^{\circ}E,\;(K=7.1,\;A_{95}=20.7^{\circ})$이다. 이중 정자극의 위치는 한반도의 후기 백악기극의 위치와 통계적으로 동일한 것으로 나타나 함평분지 화산암

  • PDF

Late Quaternary Stratigraphy of the Tidal Deposits In the Hampyung Bay, southwest coast of Korea (한국 서남해 함평만 조간대 퇴적층의 제4기 후기 층서 연구)

  • Park, Yong-Ahn;Lim, Dhong-Il;Choi, Jin-Yong;Lee, Young-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.138-150
    • /
    • 1997
  • The late Quaternary stratigraphy of the tidal deposits in the Hampyung Bay, southwestern coast of Korea comprises 1) Unit III (nonmarine fluvial coarse-grained sediments), 2) Unit II (late Pleistocene tidal deposits), and 3) Unit I (late Holocene fine-grained tidal deposits) in ascending order. The basements of the Hampyung Bay is composed of granitic rocks and basic dyke rocks. These three units are of unconformally bounded sedimentary sequences. The sequence boundary between Unit I and Unit II, in particular, seems to be significant suggesting erosional surface and exposed to the air under the cold climate during the LGM. The uppermost stratigraphic sequence (Unit I) is a common tidal deposit formed under the transgression to highstand sea-level during the middle to late Holocene.

  • PDF

Hydrothermal Gold Mineralization of the Sambo Deposit in the Muan Area, Korea (무안 지역, 삼보 광상의 금광화작용)

  • Pak, Sang-Joon;Choi, Seon-Gyu
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.275-286
    • /
    • 2008
  • The Sambo gold deposit located nearby the Cretaceous Hampyeong basin is composed of gold quartz fine vein(the Jija vein) within Cretaceous rhyolite showing $N10{\sim}20W$ trends as well as $N5{\sim}10E$ trending quartz veins(the Pungja, Gwangsan and Pungjaji veins) in Precambrian gneiss. The gold vein typically displays the intermittent and irregular fine veins within rhyolite. Electrum is disseminated in wallrock along the fine cracks as well as coexists with hematite replacing pyrite. Ore-forming fluids from the mineralized vein($H_2O/-NaCl$ system, Th; $340{\sim}200^{\circ}C$, Salinity <2.7 eq. wt.% NaCl) and NE-trending veins($H_2O-NaCl/-CO_2$ system, Th; $400{\sim}190^{\circ}C$, salinity <7.9 eq. wt.% NaCl) are featured by dissimilar physicochemical conditions but their fluid evolution trends(boiling and mixing) are similar with each other. Gold veins of the Sambo deposit filled along NNW-trending tension crack are related to pull-apart basin evolution. Selective gold mineralization of the deposit reflect to dissimilarity between two ore-forming fluid sources. Consequently, gold veining of the Sambo deposit formed at shallow-crustal level and could be categorized into epithermal-type gold deposit related to tensional fractures filling triggered by Cretaceous geodynamics.

The Changing Process of the Tidal Landforms in Hampyeung Bay, Southwest Korea (함평만의 간석지 해안지형의 변화)

  • KIM, Nam-Shin;LEE, Min-Boo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.223-233
    • /
    • 2011
  • The aims of this study is about distribution characteristics of tidal coastal landforms, and that changing process in the Hampyeung Bay, which has a semi-enclosed bay like basin shape without inflow of stream, the mouth of open sea is narrow and forms with wide ends toward inland sea. The source of deposits are moved materials by tidal currents and from coastal slopes. Main landform elements of study area consist of tidal flat, tidal channels, intertidal sand bar, sea cliffs, and sea terrace. Tidal flats is classified with mud flat and mixed flat by grain size composition. Mud flats have developed at the shoreline area that tidal flat is closed to the continuity of gentle slope, and mixed flat developed at the foot of the sea cliffs and sea terraces. Quaternary deposits were identified in the coastal materials sedimented by the sea-level change. According to the analysis of grain size composition during last ten years, sands and silt has increased 2% and 6% respectively, clay has been decreased by 9%. The concaved tidal flats are colonized by salt plants. Areal changes of salt plants expanded near four times from 2.4km2 at the year 2001 to 9.3km2 at the year 2009. During the same periods, mean grain size became coarser from 6.5φ to 4.5φ at the salt plants area.

The Forming Process of the Maisan and Nearby Famous Mountains and the Related Mountain Ranges and Water Systems (마이산과 주변 명산의 형성과정과 그에 관련된 산맥과 수계 변화)

  • Oh, Changwhan;Lee, Seunghwan;Lee, Boyoung
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.201-219
    • /
    • 2017
  • The Jinan Basin which includes Maisan locates in the central part of the northern boundary of the Yeongnam Massif. The basement rocks of the Jinan Basin and surrounding area are Precambrian gneiss and Mesozoic granite which were exposed on the surface before Cretaceous. The Jinan Basin, one of the Cretaceous pull-apart basins in South Korea, formed along the Yongdong-Gwangju fault system. Maisan is composed of conglomerate deposited in the eastern slope of the Jinan Basin showing the shape of horse ears and the unusual topography where many tafonies were developed. The strike slip fault that caused the Jinan Basin was connected to the deep depth so that the magma formed at 200 km depth could have extruded on the surface causing active volcanic activity in and around the Jinan basin. As a result, Cheonbansan composed of pyroclastic rocks, Gubongsan consisting of volcanic neck and WoonilamBanilam formed by the lava flow, appear around Maisan forming a specific terrain. After the formation of the Jinan Basin and surrounding volcanic rocks, they uplifted to form mountains including Masian; the uplifting time may be ca. 69-38 Ma. At this time, the Noryeong mountain range may be formed in the regions which extended from Chugaryeong through Muju and Jinan to Hampyeong dividing the Geumgang and Seomjingang water systems. Due to the ecological barrier, the Noryeong mountain range, Coreoleuciscus splendidus living in the Geumgang water systems was differentiated from that in the Soemjingang water system. In addition, the Geumgang and Mangyeong-Dongjingang water systems were separated by the Unjangsan, which developed in the NNW direction. As a result, diverse ecosystem have been established in and around Maisan and at the same time, diverse cultural and historical resources related to Maisan's unique petrological features, were also established. Therefore, Maisan and surrounding area can be regarded as a place where a geotourism can be successfully established by combining the ecological, cultural and historical resources with a geological heritage. Therefore Maisan and surrounding areas have a high possibility to be a National Geopark and UNESCO Global Geopark.