• Title/Summary/Keyword: 함침-환원법

Search Result 25, Processing Time 0.031 seconds

The Effect of Promoter on the SO2-resistance of Fe/zeolite Catalysts for Selective Catalytic Reduction of NO with Ammonia (NO의 암모니아 선택적 촉매환원반응을 위한 철 제올라이트 촉매의 내황성에 미치는 조촉매 효과)

  • Ha, Ho-Jung;Choi, Joon-Hwan;Han, Jong-Dae
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.153-163
    • /
    • 2015
  • The effects of H2O and residue SO2 in flue gases on the activity of the Fe/zeolite catalysts for low-temperature NH3-SCR of NO were investigated. And the addition effect of Mn, Zr and Ce to Fe/zeolite for low-temperature NH3-SCR of NO in the presence of H2O and SO2 was investigated. Fe/zeolite catalysts were prepared by liquid ion exchange and promoted Fe/zeolite catatysts were prepared by liquid ion exchange and doping of Mn, Zr and Ce by incipient wetness impregnation. Zeolite NH4-BEA and NH4-ZSM-5 were used to adapt the SCR technology for mobile diesel engines. The catalysts were characterized by BET, X-ray diffraction (XRD), SEM/EDS, TEM/EDS. The NO conversion at 200 ℃ over Fe/BEA decreased from 77% to 47% owing to the presence of 5% H2O and 100 ppm SO2 in the flue gas. The Mn promoted MnFe/BEA catalyst exhibited NO conversion higher than 53% at 200 ℃ and superior to that of Fe/BEA in the presence of H2O and SO2. The addition of Mn increased the Fe dispersion and prevented Fe aggregation. The promoting effect of Mn was higher than Zr and Ce. Fe/BEA catalyst exhibited good activity in comparison with Fe/ZSM-5 catalyst at low temperature below 250 ℃.

Highly dispersed $Ru/{\alpha}-Al_2O_3$ Catalyst development for selective CO oxidation reaction (선택적 CO 산화반응을 위한 고분산된 $Ru/{\alpha}-Al_2O_3$ 촉매개발)

  • Eom, HyunJi;Koo, KeeYoung;Jung, UnHo;Rhee, YoungWoo;Yoon, WangLai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.228.1-228.1
    • /
    • 2010
  • 선택적 CO 산화반응(PrOx)을 위한 Ru이 고분산 담지된 $Ru/{\alpha}-Al_2O_3$ 촉매를 증착-침전법(deposition-precipitation)으로 제조하였다. 용액의 pH와 aging 시간에 따른 Ru 입자의 크기 변화와 분산도의 영향을 살펴보았으며 함침법(impregnation)으로 비교 촉매를 제조하였다. 촉매의 특성분석은 BET, TPR, CO-Chemisorption분석을 수행하여 촉매의 비표면적, 환원특성, 분산도를 알 수 있었다. 특성분석결과, 증착-침전법으로 제조한 $Ru/{\alpha}-Al_2O_3$ 촉매가 함침법으로 제조한 촉매에 비해 분산도가 높았으며, pH별 촉매 제조에서는 pH6.5로 제조한 촉매가 22.06%로 가장 높은 분산도를 보였다. 또한, 담체의 비표면적 영향에 따른 Ru 입자의 분산도를 살펴보기 위해 ${\gamma}-Al_2O_3$${\alpha}-Al_2O_3$ 담체를 적용한 결과, 비표면적이 작은 ${\alpha}-Al_2O_3$ 담체 표면에서 Ru 분산도가 ${\gamma}-Al_2O_3$ 담체에 비해 높았다. 이는 기공이 발달하여 비표면적이 넓은 ${\gamma}-Al_2O_3$ 담체는 소량의 Ru을 고분산 담지 시 담체 표면보다는 기공 내에 담지 되는 양이 많아 실제 반응 시 반응에 참여하는 표면 활성 금속양이 적음을 알 수 있다. 특히, 선택적 산화반응과 같이 표면에서 빠른 반응이 일어나는 경우, 기공 내부의 활성금속이 반응에 참여하기 어려워 반응 활성이 낮음을 PrOx 반응실험을 통해 확인할 수 있었다. PrOx test 조건은 GHSV 250000~60000, 온도는 80~200도, 람다값은 2~4로 성능 비교하여 실험 하였다. PrOx의 성능평가 결과 담체를 ${\alpha}-Al_2O_3$를 사용하여 deposition-precipitation방법으로 제조한 pH6.5 촉매에서 $100{\sim}160^{\circ}C$에서 90%의 가장 높은 CO conversion을 가지고 18%의 선택도를 가졌다.

  • PDF

A Study on Highly Dispersed Pt/$Al2O_3$ Catalyst for Preferential CO Oxidation (고분산 담지된 Pt/$Al2O_3$ 촉매의 선택적 CO 산화반응 특성에 관한 연구)

  • Kim, Ki Hyeok;Koo, Kee Young;Jung, UnHo;Roh, Hyeon Seog;Yoon, Wang Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.157.1-157.1
    • /
    • 2011
  • 선택적 CO 산화반응(PrOx)에 사용되는 촉매 중 Pt, Ru, Rh 등의 귀금속 계 촉매들은 비귀금속 계 촉매에 비해 활성이 좋은 반면 가격이 비싸다는 경제적인 제한점이 있다. 따라서 소량의 귀금속을 사용하여 높은 활성의 촉매를 제조하고자 활성금속의 고분산 담지 방법에 대한 연구가 이루어지고 있다. 본 연구에서는 담체인 ${\gamma}-Al_2O_3$ 표면에 활성금속인 Pt의 고분산 담지를 위해 증착-침전법(Deposition-precipitation)을 적용하였으며 용액의 pH 변화에 따른 Pt 금속 입자의 분산도에 대한 영향을 살펴보았다. Pt의 함량은 1wt%로 고정하였고 침전제로 NaOH를 사용하여 용액의 pH를 pH 7.5 ~ 10.5로 변화시켰다. 제조된 촉매는 세척 후 $400^{\circ}C$, 3시간 소성 하였다. 제조된 1wt% Pt/$Al_2O_3$ 촉매의 특성분석을 위해 BET, TPR, CO-chemisorption을 수행하였다. PrOx 반응 실험은 GHSV=60,000 $ml/g_{cat}{\cdot}h$, $T=100{\sim}200^{\circ}C$, ${\lambda}$=4 조건에서 수행되었으며 반응 전에 촉매는 $400^{\circ}C$, 3시간 환원 후 사용하였다. 촉매의 특성분석과 PrOx 반응 실험 결과를 통해 촉매가 담체 위에 고분산 되는 최적의 pH를 확인할 수 있었으며, 기존의 함침법으로 제조된 촉매와 성능 비교를 통해 제조방법에 따른 영향을 살펴보았다.

  • PDF

Characteristics of CL-SPEEK/HPA Membrane Electrodes with Pt-Ni and Pt-Co Electrocatalysts for Water Electrolysis (전극 촉매 Pt-Ni 및 Pt-Co를 이용한 수전해용 공유가교 CL-SPEEK/HPA 막전극의 특성)

  • Woo, Je-Young;Lee, Kwang-Mun;Jee, Bong-Chul;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.26-34
    • /
    • 2010
  • The electrocatalystic prperties of Pt-Co and Pt-Ni with heteropolyacids (HPAs) entrapped in covalently cross-linked sulfonated poly(ether ether ketone) (CL-SPEEK)/HPA membranes were investigated for water electrolysis. The HP As, including molybdophosphoric acid (MoPA), and tungstophosphoric acid (TPA) were both used as membrane additives and electrocatalysts. The membrane electrode assembly (MEA) was prepared by a nonequilibrium impregnation-reduction (I-R) method. $Pt(NH_3)_4Cl_2$, $NiCl_2$ and $CoCl_2$ as electrocatalytic materials and $NaBH_4$ as reducing agent were used. I order to enhance electrocatalytic activity, the catalyst layer prepared above was electrodeposited (Dep) with HP A. Surface morphologies and physico-chemical properties of MEA were investigated by means of SEM, EDX and XRD. The electrocatalytic properties of composite membranes such as the cell voltage and coulombic charge in CV were in the order of magnitude: CL-SPEEK/MoPA40 (wt%) > CL-SPEEK/TPA30 > Nafion117. In the optimum cell applications for water electrolysis, the cell voltage of Pt/CL-SPEEK-MoPA40/Pt-Co (Dep-MoPA) and Pt/CL-SPEEK-TPA30/Pt-Co (Dep-TPA) was 1.75 Vat $80^{\circ}C$ and $1\;A/cm^2$ and voltage efficiency was 87.1%. Also, the observed activity of Pt-Co (84:16 atomic ratio by EDX) is a little higher than that of Pt-Ni (86: 14). The current density peak of electrodeposited electrodes were better a little than those of unactivated electrodes based on the same membranes.

Synthesis of Ethylamines for the Reductive Amination of Ethanol over Ni Catalysts: Effect of Supports (니켈 촉매상에서 에탄올의 환원성 아민화반응에 의한 에틸아민 제조 : 담체의 영향)

  • Jeong, Ye-Seul;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.714-722
    • /
    • 2019
  • Catalysts were prepared by using incipient wetness impregnation method with 17 wt% Ni on a support ($SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, $SiO_2$, $TiO_2$, MgO) and the catalytic activity in the reductive amination of ethanol with ammonia in the presence of hydrogen was compared and evaluated. The catalysts used before and after the reaction were characterized using X-ray diffraction, nitrogen adsorption, ethanol-temperature programmed desorption (EtOH-TPD), isopropanol-temperature programmed desorption (IPA-TPD), and hydrogen chemisorption etc. In the case of preparing $ZrO_2$ and $Y_2O_3$ supports, the small amount of Si dissolution from the Pyrex reactor surface provoked the formation of mixed oxides $SiO_2-ZrO_2$ and $SiO_2-Y_2O_3$. Among the catalysts used, $Ni/SiO_2-Y_2O_3$ catalyst showed the best activity, and this good activity was closely related to the highest nickel dispersion, and low desorption temperature in EtOH-TPD and IPA-TPD. The low catalytic activity on Ni/MgO catalysts showed low activity due to the formation of NiO-MgO solid-solutions. In the case of $Ni/TiO_2$, the reactivity was low due to the low nickel metal phase due to strong metal-support interaction. In the case of using a support as $SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, and $SiO_2$, the selectivities of ethylamines and acetonitrile were not significantly different at similar ethanol conversion.

Effect of MoO3 Morphological Change over Hydrogen Spillover Kinetics (MoO3 Morphology 변화가 수소 Spillover에 미치는 영향)

  • Kim, Jin Gul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1109-1113
    • /
    • 1999
  • sothemal reduction at $50^{\circ}C$ using $Pt/MoO_3$ or $Pt/MoO_3/SiO_2$ made by dry impregnation or physical mixture of $Pt^{\circ}$ and $MoO_3$ demonstrated that the $H_2$ uptake vis $H_2$ spillover from Pt into $MoO_3$ was enhanced as calcination temperature was increased. Surface area of exposed Pt crystallites measured by CO chemisorption was decreased with higher calcination temperature. In addition, TEM showed that $MoO_x$ overlayers were formed on Pt crystallites after calcination at $400^{\circ}C$. Consequentially, it was found that this increased active contact sites between Pt and $MoO_3$ due to surface morphological change was one of the dominant factors for this increased $H_2$uptake via $H_2$ spillover from Pt crystallites into $MoO_3$.

  • PDF

Preparations of SPE Electrocatalysts Modified with Polypyrrole and Its Application for PEMFC (폴리피롤로 개질된 SPE 전극촉매의 제조 및 PEMFC로의 응용)

  • Kim, Jung-Hoon;Oh, Seung-Duck;Kim, Han-Sung;Park, Jong-Ho;Han, Jung-Woo;Lee, Kang Taek;Joe, Yung-Il
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.118-124
    • /
    • 2005
  • In this study, a novel deposition method of Pt catalysts onto Nafion membranes modified with polypyrrole (PPy) has been proposed for PEMFC application. The PPy/Nafion composite membranes were fabricated by chemical polymerization of pyrrole using $FeCl_3$ and $Na_2S_2O_8$ as initiator. The proton conductivity and water uptake of the chemically prepared PPy/Nafion composites were investigated. The ionic conductivity and water uptake of PPy/Nafion composite membrane prepared with $Na_2S_2O_8$ were decreased with polymerization time of pyrrole. In the case of $FeCl_3$, the ionic conductivity was almost retained and the water uptake was decreased with polymerization time of pyrrole. When the Pt particle was deposited on PPy/Nafion composites membrane by chemical reduction of $H_2PtCl_6$, the Pt loading on Nafion membrane was enhanced by polypyrrole due to electronic conduction property. The performance evaluation with membrane electrode assembly composed of Pt/PPy/Nafion composite and diffusion electrode was carried out using a single cell. As a result of fuel cell test, current density of $569mA/cm^2$ at 0.3 V has been obtained for MEA contained with Pt/PPy/Nafion composite. This study shows that direct deposition of Pt catalysts on Nafion impregnated polypyrrole is a promising method to prepare thin catalyst layer for the PEMFC.

Selective Synthesis of Acetonitrile via Direct Amination of Ethanol Over Ni/SiO2-Al2O3 Mixed Oxide Catalysts (Ni/SiO2-Al2O3 복합 산화물 촉매 상에서 에탄올의 직접 아민화 반응에 의한 선택적 아세토니트릴 합성)

  • Kim, Hanna;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.281-295
    • /
    • 2021
  • In this study, the direct amination of ethanol was performed over impregnated Ni on SiO2-Al2O3 mixed oxide catalysts prepared by varying Si/(Si + Al) molar ratio to 30 mol%. To characterize the physico-chemical properties of the catalysts used, X-ray diffraction (XRD), N2-physisorption, temperature-programmed desorption of iso-propyl alcohol (IPA-TPD), temperature-programmed desorption of ethanol (EtOH-TPD), temperature-programmed reduction with H2 (H2-TPR), H2-chemisorption and transmission electron microscopy (TEM) were used. The acidic property was continuously increased until Si/(Si + Al) = 30 mol% in SiO2-Al2O3 mixed oxides used. The dispersion of Ni metal and surface area, acid characteristics of the supported Ni catalyst have a complex effect on the catalytic reaction activity. The low reduction temperature of nickel oxide and acidic properties were beneficial to the formation of acetonitrile. In terms of conversion of ethanol, Ni/SiO2-Al2O3 catalyst with a molar ratio of 10 mol% Si/(Si+Al) showed the highest activity and a volcanic curve based on it. The tendency of results were consistent in the metal dispersion and catalytic activity.

A Study on the Influence of the Structural Characteristics of Cu/CeO2 Catalyst on the Low-Temperature Oxidation of Carbon Monoxide (Cu/CeO2 촉매의 구조적 특성이 일산화탄소 저온 산화반응에 미치는 영향 연구)

  • Kim, Min Su;Choi, Gyeong Ryun;Kim, Se Won;Hong, Sung Chang
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.286-292
    • /
    • 2020
  • This study confirmed the effect of the Cu/CeO2-X catalyst on the CO oxidation activity at low temperature through the catalyst's structure and reaction characteristics. The catalyst was prepared by the wet impregnation method. Cu/CeO2_X catalysts were manufactured by loading Cu (active metal) using CeO2 (support) formed at different calcination temperatures (300-600 ℃). Manufactured Cu/CeO2_X catalysts were evaluated for the low-temperature activity of carbon monoxide. The Cu/CeO2_300 catalyst showed an activity of 90% at 125 ℃, but the activity gradually decreased as the calcination temperature of the CeO2-X and Cu/CeO2_600 catalysts showed an activity of 65% at 125 ℃. Raman, XRD, H2-TPR, and XPS analysis confirmed the physicochemical properties of the catalysts. Based on the XPS analysis, the lower the calcination temperature of the CeO2 was, the higher the unstable Ce3+ species (non-stoichiometric species) ratio became. The increased Ce3+ species formed a solid solution bond between Cu and CeO2-X, and it was confirmed by the change of the CeO2 peak in Raman analysis and the reduction peak of the solid solution structure in H2-TPR analysis. According to the result, the formation of the solid solution bond between Cu and Ce has been enhanced by the redox properties of the catalysts and by CO oxidation activity at low temperatures.

Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) over Nickel Catalyst Supported on Surfactant-templated Mesoporous Alumina (계면활성제를 이용하여 제조된 중형기공성 알루미나 담체에 담지된 니켈촉매 상에서 액화천연가스(LNG)의 수증기개질반응에 의한 수소 제조)

  • Seo, Jeong-Gil;Youn, Min-Hye;Song, In-Kyu
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • Mesoporous aluminas (A-C, A-A, and A-N) were prepared by a templating method using cationic(C), anionic(A), and non-ionic(N) surfactant as a structure-directing agent, respectively. Nickel catalysts supported on mesoporous alumina (Ni/A-C, Ni/A-A, and Ni/A-N) were then prepared by an impregnation method, and were applied to hydrogen production by steam reforming of liquefied natural gas (LNG). Regardless of surfactant type, nickel species were finely dispersed on the surface of mesoporous alumina in the calcined catalysts. It was revealed that interaction between nickel species and support in the reduced catalysts was strongly dependent on the identity of surfactant. LNG conversion and $H_2$ composition in dry gas increased in the order of Ni/A-C < Ni/A-A < Ni/A-N. It was found that catalytic performance increased with increasing nickel surface area in the reduced catalyst. Among the catalyst tested, Ni/A-N catalyst with the highest nickel surface area showed the best catalytic performance.