본 논문에서는 입력된 FISH 세포영상을 군집세포영역과 독립세포영역으로 분류하고, 군집세포영역에 대해서는 하나의 세포를 분리하는 알고리즘을 제안한다. 먼저 입력된 영상에 대해서 가우시안혼합모델과 세포의 명암도 값에 대한 최대 우도 함수를 사용하여 세포영역과 배경영역을 분할해줄 임계값을 정의하게 된다. 이렇게 얻어진 전경세포영역에 대해서 보다 정확한 세포 분석을 위해서 군집세포와 독립세포를 분류하게 된다. 세포 영역의 분류과정을 위해서는 베이지안 네트워크와 확률밀도함수를 사용한다. 학습데이터로부터 밀집도(compactness), 평활도(smoothness), 후-모멘트(Hu-moment)에 대한 형태학적 특징값을 추출하여 확률밀도함수를 구성하고, 이를 기반으로 베이지안 네트워크를 사용하여 두 영역을 분류하게 된다. 군집세포로 분류된 영역에 대해서는 그 군집세포를 구성하고 있는 독립세포로 각각 분리한다. 먼저, 명암도 기울기 변환(intensity gradient transform) 영상과 워터쉐드 알고리즘을 이용하여 군집세포 영역을 작은 영역으로 분할하게 된다. 작게 분할된 영역을 하나의 세포영역으로 병합시키기 위해서, 군집세포에 존재하는 독립세포의 수만큼의 마커를 결정 침식 연산을 사용하여 추출하고, 추출된 마커를 중심으로 단계적 병합 알고리즘을 제안한다. 본 논문에서 제안한 방법은 166개의 FISH 세포를 사용하여 테스트한 결과 99.29%의 정확한 분리결과를 보여줬으며 기존의 다른 알고리즘보다도 뛰어난 성능과 빠른 실행시간을 보여주었다.
이 논문에서는 안정대륙권역(Stable Continental Regions, SCRs)에서의 중규모 지진에 의한 근단층지반운동(Near Fault Ground Motion, NFGM) 모델을 처음으로 제시한다. 근단층지반운동은 큰 진폭의 장주기 속도 펄스를 갖는 특징을 가지고 있다. 이 속도 펄스를 모델링하기 위해서는 그 주기와 진폭을 지진의 규모와 단층거리의 함수로 표현할 수 있어야 한다. 그런데 안정대륙권역에서는 관측 자료가 빈약하여 지진데이터로부터 이 관계식을 직접 유도하는 것은 어렵기 때문에 이 연구에서는 간접적인 접근법을 채택하였다. 속도 펄스의 주기와 진폭은 단층파열의 상승시간과 파열속도의 함수임이 알려져 있고 활성구조권역(Active Tectonic Regions, ATRs)에 속하는 미국 서부지역에서는 실험적 공식이 확립되어 있다. 안정대륙권역에서의 상승시간과 단층파열속도의 지진규모에 대한 함수관계는 WUS와 CEUS에서의 자료를 비교하여 도출하였다. 이 관계식들로부터 안정대륙권역에서의 NFGM의 속도 펄스의 주기와 진폭을 지진규모 및 단층 거리에 대한 관계식으로 유도하였다. 안정대륙권역에서의 NFGM의 가속도 시간이력은 추계학적으로 생성된 원역지진지반가속도에 새로운 관계식에 의한 속도 펄스를 중첩하여 얻어진다. 적용 예제로서 탄소성 단자유도 시스템의 근단층지반운동에 대한 응답을 분석하였다.
컴퓨터의 사용이 일반화됨에 따라 데이타를 생성하고 수집하는 것이 용이해졌다. 이에 따라 데이타로부터 자동적으로 유용한 지식을 얻는 기술이 필요하게 되었다. 데이타 마이닝에서 얻어진 지식은 정확성과 이해성을 충족해야 한다. 본 논문에서는 데이타 마이닝을 위하여 퍼지 결정트리에 기반한 효율적인 퍼지 규칙을 생성하는 알고리즘을 제안한다. 퍼지 결정트리는 ID3와 C4.5의 이해성과 퍼지이론의 추론과 표현력을 결합한 방법이다. 특히, 퍼지 규칙은 속성 축에 평행하게 판단 경계선을 결정하는 방법으로는 어려운 속성 축에 평행하지 않는 경계선을 갖는 패턴을 효율적으로 분류한다. 제안된 알고리즘은 첫째, 각 속성 데이타의 히스토그램 분석을 통해 적절한 소속함수를 생성한다. 둘째, 주어진 소속함수를 바탕으로 ID3와 C4.5와 유사한 방법으로 퍼지 결정트리를 생성한다. 또한, 유전자 알고리즘을 이용하여 소속함수를 조율한다. IRIS 데이타, Wisconsin breast cancer 데이타, credit screening 데이타 등 벤치마크 데이타들에 대한 실험 결과 제안된 방법이 C4.5 방법을 포함한 다른 방법보다 성능과 규칙의 이해성에서 보다 효율적임을 보인다.Abstract With an extended use of computers, we can easily generate and collect data. There is a need to acquire useful knowledge from data automatically. In data mining the acquired knowledge needs to be both accurate and comprehensible. In this paper, we propose an efficient fuzzy rule generation algorithm based on fuzzy decision tree for data mining. We combine the comprehensibility of rules generated based on decision tree such as ID3 and C4.5 and the expressive power of fuzzy sets. Particularly, fuzzy rules allow us to effectively classify patterns of non-axis-parallel decision boundaries, which are difficult to do using attribute-based classification methods.In our algorithm we first determine an appropriate set of membership functions for each attribute of data using histogram analysis. Given a set of membership functions then we construct a fuzzy decision tree in a similar way to that of ID3 and C4.5. We also apply genetic algorithm to tune the initial set of membership functions. We have experimented our algorithm with several benchmark data sets including the IRIS data, the Wisconsin breast cancer data, and the credit screening data. The experiment results show that our method is more efficient in performance and comprehensibility of rules compared with other methods including C4.5.
Journal of the Korean Data and Information Science Society
/
제27권2호
/
pp.499-510
/
2016
생존분석 회귀모형에서 적절한 변수를 선택하는 것은 매우 중요하다. 본 논문에서는 "frailtyHL" R 패키지 (Ha 등, 2012)를 기반으로 하여 다수준 프레일티 모형 (multi-level frailty models)에서 벌점화 변수선택 방법 (penalized variable-selection method)의 절차를 소개한다. 여기서 모형 추정은 벌점화 다단계 가능도에 기초하며, 세 가지 벌점 함수 (LASSO, SCAD 및 HL)가 고려된다. 개발된 방법의 예증을 위해 벨기에 EORTC (European Organization for Research and Treatment of Cancer; 유럽 암 치료기구)에서 수행된 다국가/다기관 임상시험 자료를 이용하여 세 가지 변수 선택 방법의 결과를 비교하고, 그 결과들의 상대적 장 단점에 대해 토론한다. 특히, 자료 분석 결과에 의하면 SCAD와 HL방법이 LASSO보다 중요한 변수를 잘 선택하는 것으로 나타났다.
본 연구에서는 초기재령 고강도콘크리트의 수화발열 및 자기수축 특성의 상관관계를 분석하기 위해 수화발열 및 자기수축의 초기특성을 대표할 수 있는 계수로서 수화발열상승구간 및 자기수축증가구간의 직선 기울기인 수화발열상승속도 및 자기수축증가속도를 설정하였으며, 이 두 계수는 통계적 수법을 활용하여 일정 범위의 결정계수를 갖는 회귀계수로 산정하였다. 또한 수화발열 특성과 자기수축 특성을 동시에 평가하기 위한 시험 방법으로서 기존의 간이단열온도상승시험을 보완한 시험 방법을 제안하였으며, 본 시험 방법을 통해 실험을 실시하여 실측데이터를 분석한 결과, 고강도콘크리트의 수화발열 및 자기수축에 대한 초기재령 특성을 수치적으로 나타내는 것이 가능하였으며 자기수축을 수화발열 특성을 나타내는 계수의 함수식으로 제시하는 것이 가능하였다.
본 논문은 음성진단이나 치료를 위한 기초연구로서, 인체의 진동신호를 측정하여 그 특성을 분석한 것이다. 가진신호는 외부적인 힘이 아닌 자신의 음성이며, 진동과 공진 특성이 강한 모음 '아', '에', '이', '오', '우'를 적용하여 실험하였다. 실험장치로는 마이크로폰과 가속도계 그리고 증폭기를 이용하였으며 컴퓨터에 측정 데이터를 저장하였다. 마이크로폰으로 음성신호를 저장하면서 동시에 가속도계를 이용하여 인체 각 부위에서의 진동신호를 측정하였으며 측정 위치는 머리, 목, 몸체를 일정한 간격으로 나누어 총 63개의 위치로 정하였다. 진동 신호의 측정 위치와 횟수는 사용 목적에 따라 충분히 가변적일 수 있다. 진동 분석을 위한 파라미터는 진동 신호의 크기, 위상, 기본 진동수, 결집음폭대이며, 코히어런스 함수를 이용하여 인체의 진동신호와 음성과의 상관성을 알아보았다. 실험결과, 인체의 위치에 따라 독특한 특징들이 있음을 확인하였으며, 그 결과를 제시하였다.
수도권 대중교통 이용자는 2004년 서울시의 대중교통 체계 개편에 따라 교통 카드를 사용하여 버스와 지하철을 이용하게 되었다. 교통 카드를 사용하는 각 승객의 승차와 하차에 관한 데이터가 하나의 트랜잭션으로 구성되고, 하루 천만 건 이상의 트랜잭션들로 구성된 대용량 교통카드 트랜잭션 데이터베이스가 만들어지고 있다. 대중교통을 이용하는 승객들의 승차와 하차에 관한 여러 정보를 담고 있는 교통카드 트랜잭션 데이터베이스에서 유용한 패턴이나 정보를 탐사해내는 연구가 계속 진행되고 있다. 이런 연구 결과는 수도권 대중교통 정책을 입안하는데 중요한 기초 자료가 되고 수도권 승객들에게 대중교통을 보다 잘 이용할 수 있는 정보로 제공된다. 교통카드 이용률은 2006년 79.5%, 2007년 80.3%, 2008년 81.6%로 점차적으로 증가하고 있다. 대용량의 교통카드 트랜잭션 데이터베이스에 대한 연구를 살펴보면 하루 동안의 교통카드 트랜잭션 데이터베이스에서 순차 패턴을 탐사하는 알고리즘을 연구하였고[1], 승객들의 통행 패턴에 대한 분석연구를 확장하여 일 년에 하루씩 2004년에서 2006년까지 3일간의 교통카드 트랜잭션 데이터베이스로부터 승객 시퀀스의 평균 정류장 개수와 환승 횟수 등을 연도별로 비교하였다[2]. 수도권 지하철 시스템의 특성에 관한 연구로는 네트워크 구조 분석이 있었고[3], 승객의 기종점 통행 행렬(Origin-Destination trip matrix)에 의한 승객 흐름의 분포가 멱함수 법칙(power law)임을 보여주는 연구가 있었고[4], 지하철 교통망에서 모든 링크상의 승객들의 흐름을 찾아내는 연구가 있었다[5]. 본 논문에서는 교통카드 트랜잭션 데이터베이스에서 지하철 승객들의 통근 패턴을 탐사해내는 방법을 연구하였다. 수도권 지하철 네트워크에 대한 정보를 입력하고 하루치의 교통카드 트랜잭션 데이터베이스에 연구된 방법을 적용하여 8가지 통근 패턴들을 탐사해내고 분석하였다. 탐사된 패턴들 중에서 많은 승객들이 지지하는 출퇴근 패턴에 대해서는 시간대별로 승객수를 그래프로 보여주었다.
최근 빅데이터 시대의 도래와 함께 교통사고와 관련된 요인을 설명하기 용이해졌다. 이에따라 최신 분석 기법을 적용하여 교통사고 자료를 분석하고 시사점을 도출할 필요가 있다. 본 연구의 목적은 고속도로 교통사고 자료를 이용하여 고속도로의 주요 분석 단위인 콘존의 교통사고 건수를 예측하기 위하여 음이항 회귀모형과 딥 러닝을 이용한 기법을 적용하고 예측 성능을 비교하였다. 예측 성능 비교 결과, 딥 러닝 모형의 MOE들이 음이항 회귀모형에 비해 다소 우수한 것으로 나타났으나, MAD 기준으로 차이는 미미한 것으로 나타났다. 하지만 딥 러닝을 이용할 경우 다른 독립변수들을 추가하는 것이 용이하고, 모형의 구조 등을 변경할 경우 예측 신뢰도를 더욱 증가시킬 수 있을 것으로 판단된다.
수동 시역전 기법은 시공간적인 집속효과를 통해 다중경로 채널응답에 의한 인접 심볼간 간섭의 영향을 줄임으로써 수중통신 시스템의 오류 성능을 향상시킬 수 있는 방법이다. 이러한 수동 시역전 기법은 일반적으로 시역전 결합에 사용되는 수신신호가 많을수록 큰 공간 다이버시티 이득을 얻기 때문에 많은 수의 수신기를 사용할 때 우수한 통신 성능을 얻을 수 있다. 본 논문에서는 제한된 개수의 수신기를 사용하더라도 많은 수의 수신기를 사용할 때와 근접한 통신 성능을 얻을 수 있는 수신기의 개수와 조합에 대해 분석한다. 분석을 위해 2015년 5월에 제주 남서쪽 해역에서 수행된 SAVEX15(Shallow-water Acoustic Variability Experiment 2015) 실험 데이터를 활용한다. 음향채널이 존재하는 채널 특성 때문에 에너지가 집중되는 수심이 존재하였고 에너지가 집중되는 수심에 존재하는 수신기를 포함하여 수동 시역전 결합을 할 때, 일부의 수신기만을 사용하여 최적에 가까운 통신 성능을 도출할 수 있음을 보인다.
이 연구는 프로배구 선수의 사회연결망 구조를 분석하고, 연결망 주요 변수와 자원교환의 관계를 규명하였다. 이 연구에서는 유목적 표집법을 이용하여 2011년 한국 프로배구팀 중 남자 5개팀과 여자 5개 팀의 선수들을 연구대상으로 선정하였으며, 각 140명을 표집하였다. 그러나 최종 분석에 사용된 데이터는 127명이다. 조사방법은 NGQ(Name Generator Question)를 이용한 면접법을 통하여 실시하였으며, 자료처리방법은 NetMiner 3.0을 활용하여 사회연결망 분석을 실시하였다. 결론은 다음과 같다. 첫째, 프로배구 선수의 사회연결망은 멱함수 법칙을 따르는 척도없는 네트워크였다. 즉, 중앙에 놓여 있는 소수의 선수(노드)가 변방이나 주변에 위치한 다른 선수와의 사회적 관계를 끌어 들이는 부익부 빈익빈 형태를 보였다. 둘째, 프로배구 선수의 사회연결망 구조는 자원교환과 유의한 관련성을 지니고 있다. 즉, 내향 활동성이 높을수록 모든 자원교환에서, 외향 활동성이 높을수록 사교적 자원교환에서, 매개중앙성이 높을수록 모든 자원교환에서, 내향 파워가 높을수록 사교적 자원교환에서, 그리고 외향 파워가 높을수록 모든 자원교환에서 유리하였다. 프로배구 선수의 사회연결망에서의 중앙과 변방의 자리매김 위치는 선수들간의 자원교환에서 유리함을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.