• Title/Summary/Keyword: 할로겐 광중합

Search Result 42, Processing Time 0.013 seconds

Shear bond strength of orthodontic adhesive to amalgam surface using light-cured resin (광중합형 레진으로 아말감 면에 브라켓 접착 시 전단결합강도)

  • Cho, Ji-Young;Lee, Dong-Yul;Lim, Yong-Kyu
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.443-450
    • /
    • 2005
  • This study was performed to compare the shear bond strength of orthodontic adhesive to amalgam according to different light sources (halogen-based light and light emitting diode (LED)) and amalgam surface treatments. Ninety extracted human premolars were randomly divided into 6 groups (4 experimental and 2 control groups) of 15 by light sources and surface treatments. Orthodontic brackets were bonded and shear bond strength was measured with an Instron universal testing machine. The findings were as follows: The bond strength of adhesive to amalgam surface was 3-5.5 MPa which was lower than that of acid-etched enamel (19 MPa) control. In the sandblasted amalgam surface, the shear bond strength of the halogen light group was higher than that of the LED group (p < 0.05) but. in the non-treated amalgam surface. there was no significant difference in the shear bond strength according to the light sources (p> 0.05). Within the same light source. sandblasting had no significant effect on the shear bond strength of the adhesive bonded to amalgam surface (p > 0.05). There was no significant difference in shear bond strength according to the light sources in acid-etched enamel control groups. This results suggest that there can be a limit in using light curing adhesives when brackets are bonded to an amalgam surface. Additional clinical studies are necessary before routine use of halogen light and LED light curing units can be recommended in bonding brackets to an amalgam surface.

Effects of plasma arc curing lights on the surface hardness of the composite resins (플라즈마 광중합기가 복합레진 중합에 미치는 영향)

  • Lee, Soo-Won;Yang, Kyu-Ho;Kim, Seon-Mi;Choi, Nam-Ki
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.4
    • /
    • pp.624-632
    • /
    • 2006
  • In recent years, xenon plasma arc lamp was introduced for high-intensity curing of composite filling materials in direct resin restorations. In this study, two types of restorative materials, namely composites point $4^{(R)}$ and $Z250^{(R)}$ were selected and curing was conducted using a conventional halogen light and two plama curing lights. Two different resin composites were cured using the different units($Flipo^{(R)}$, Ultra-lite 180A, and $TriLight^{(R)}$) and tested for microhardness. The purpose of this study was to test the hypothesis that exposure to a plasma curing lamp for 3, 6. 9 seconds is equivalent to 20 or 40 seconds of irradiation using a conventional halogen curing unit. 1. $Flipo^{(R)}$ and Ultra-lite 180A were able to polymerize point $4^{(R)}$ at 6 seconds to a degree equal to that of the $TriLight^{(R)}$(control) at 40 seconds. 2. $Flipo^{(R)}$ was able to polymerize $Z250^{(R)}$ at 9 seconds to a degree equal to that of the $TriLight^{(R)}$(control) on the bottom surface at 20 seconds. whereas Ultra-lite 180A could not do. 3. Two plasma curing units were able to cure the test-composites with bottom/top ratios approximately 61% to 96% at 3 to 9 seconds. There were some differences between the two composite brands, with $Z250^{(R)}$ displaying less difference between top and bottom hardness values. For point $4^{(R)}$ and $Z250^{(R)}$, at least 6 or 9 seconds were necessary to produce microhardness equivalent to that of the $TriLight^{(R)}$ curing at 20 or 40 seconds.

  • PDF

HARDNESS OF COMPOSITE RESIN CURED BY HIGH INTENSITY HALOGEN LIGHT (고강도 할로겐광으로 중합한 복합레진 수복재의 경도)

  • Park, Jong-Seok;Lee, Kwang-Hee;Kim, Dae-Eup;Kim, Seong-Hyeong;Ahn, Ho-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.471-479
    • /
    • 2001
  • The purpose of this study was to compare the effect of the high intensity halogen light $(850\sim1000mW/cm^2)$ with that of the conventional halogen light $(400mW/cm^2)$ on the hardness of composite resin. Three resin composites (Z-100, 3M, U.S.A. : Tetric Ceram, Vivadent, Liechtenstein; SureFil, Dentsply, U.S.A.) were filed in the stainless steel moulds which were 4mm in diameter and 2, 3, 4, and 5mm in depth, respectively. They were cured under the four different modes : (1) conventional mode, 40 seconds at $400mW/cm^2$; (2) 'ramp' mode, 10 seconds at 100 to $1000mW/cm^2$ plus 10 seconds at $1000mW/cm^2$; (3) 'boost' mode, 10 seconds at $1000mW/cm^2$; and (4) 'standard' mode, 20 seconds at $850mW/cm^2$. The surface hardnesses of the top and the bottom of the resin samples were measured with a microhardness tester (MXT70, Matsuzawa, Japan). The top surface hardness was not significantly different among the curing modes. The bottom surface hardness was generally the highest in the conventional mode and the lowest in the high intensity boost mode. There was no significant difference in the bottom surface hardness between the conventional mode and the high intensity standard mode in 2mm depth. The results suggest that the curing time of the high intensity halogen light $(850mW/cm^2)$ should be at least 20 seconds to produce the equal level of the bottom surface hardness of 2mm resin composite as compared to the hardness produced by the conventional halogen light $(400mW/cm^2)$.

  • PDF

INFLUENCE OF LIGHT SOURCE AND CURING TIME ON SURFACE HARDNESS OF RESIN COMPOSITES (중합 광원과 중합 시간이 복합레진의 표면 경도에 미치는 영향)

  • Bae, Sang-Man;Lee, Kwang-Hee;Kim, Dae-Eup;Ahn, Ho-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.199-206
    • /
    • 2001
  • The purpose of study was to compare the plasma arc light with the halogen light in compostie resin curing. Three composite resin materials(Z-100, 3M, USA; Tetric Ceram, Vivadent, Liechtenstein; SureFil, Dentsply, USA) were filled in the teflon molds (4mm in diameter and 2, 3, 4, 5mm in thickness) and cured with either the conventional low-intensity light curing unit with a halogen lamp (Optilux 360, Demetron, U.S.A.) for duration of 40 seconds or with the high-intensity light curing unit with a plasma arc lamp (Flipo, Lokki, France) for duration of 3, 6, and 9 seconds. The intensity of halogen light was about $370mW/cm^2$ and that of plasma light was about $1,900mW/cm^2$. After one week, the surface hardnesses of both the top and the bottom of the resin samples were measured with a microhardness tester(MXT70, Matsuzawa, Japan). There were significant differences in the hardness between the top and the bottom of the resin samples except the 2mm thickness samples cured by halogen light for 40s or by plasma light for 9s. There was no significant difference between the hardness values of the top surfaces of the thickness groups. The hardness values of the bottom surfaces decreased as the curing time decreased and as the thickness of resin samples increased, and the three kinds of resin composites showed similar patterns. The results suggest that the halogen light for 40 seconds might be able to cure greater depth of resin composites than the plasma light for 3, 6, or 9 seconds.

  • PDF

ELUTION OF RESIDUAL MONOMER ACCORDING TO VARIOUS LIGHT SOURCES AND CURING TIME ON THE POLYMERIZATION OF PHOTOACTIVATED PIT AND FISSURE SEALANTS (광중합 광원의 종류와 조사시간에 따른 치면열구전색제의 미반응 모노머 용출)

  • Oh, You-Hyang;Park, Yoon-Kyung;Lee, Nan-Young;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.3
    • /
    • pp.421-430
    • /
    • 2004
  • The purpose of this study was to measure and compare the amount of unreacted TEGDMA from pit and fissure sealants cured with three different light sources; conventional halogen light curing unit, plasma arc light curing unit and argon laser. The specimens were eluted in distilled water for different time intervals. The time-related release of TEGDMA were analyzed by reverse-phase high performance liquid chromatography(HPLC). The result of present study can be summarized as follows: 1. The time-related release of TEGDMA decreased with increasing curing time in conventional halogen light, however, that not statistically significant difference(p>0.05). 2. The elution from the specimens cured for 6 and 9 seconds with plasma arc light was similar results corresponding with the time-related TEGBMA release, and was significantly lower than that cured for 3 seconds(p<0.05). 3. The elution of TEGDMA from the specimens cured with argon laser was significantly higher than that cured with halogen and plasma arc light(p<0.05). 4. The elution of TEGDMA from under recommended time of three different light sources were showed to be no statistically significant difference(p>0.05). 5. In time-related release of TEGDMA from recommended time of each light sources, the results correspond to 40 seconds of halogen light and 6 seconds of plasma arc light were similar(p>0.05). 6. The elution of TEGDMA, from over recommended time of three different light sources were showed to be no statistically significant difference(p>0.05). In this study, I suggest that curing time of plasma arc light is 6 and/or 9 seconds in the field of clinical pediatric dentistry claiming its effectiveness in optimal polymerization and reduced chair time.

  • PDF

A STUDY ON THE MODE OF POLYMERIZATION OF LIGHT-CURED RESTORATIVE MATERIALS CURED WITH THREE DIFFERENT LIGHT SOURCES (광원의 유형에 따른 광중합 수복재의 중합양상)

  • Kwon, Min-Seok;Jung, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.2
    • /
    • pp.229-237
    • /
    • 2003
  • The purpose of this study was to compare the effect of exposure time on the polymerization of surface and 2 mm below the surface of light-cured restorative materials cured with three different light sources; conventional halogen light curing unit(XL 3000, 3M, U.S.A.), plasma arc light curing unit(Flipo, LOKKI, France) and light emitting diode(LED) light curing unit(Elipar Free light, 3M, U.S.A.) and compare the uniformity of polymerization from the center to the periphery of resin surfaces according to polymerization diameter cure with three different light sources. From the experiment, the following results were obtained. 1. In Z-100, Plasma arc light exposure time of 6 to 9 seconds and LED light exposure time of 40 to 60 seconds produced microhardness values similar to those produced with 40 second exposure to a conventional halogen light(p>0.05). 2. In Tetric Flow, Plasma arc light exposure time of 9 seconds and LED light exposure time of 40 to 60 seconds produced microhardness values similar to those produced with 40 second exposure to a conventional halogen light(p>0.05). 3. In Dyract AP, Plasma arc light exposure time of 6 to 9 seconds and LED light exposure time of 20 to 40 seconds produced microhardness values similar to those produced with 40second exposure to a conventional halogen light(p>0.05). 4. In Fuji II LC, Plasma arc light exposure time of 9 seconds and LED light exposure time of 20 to 60 seconds produced microhardness values similar to those produced with 40second exposure to a conventional halogen light(p>0.05). 5. Except Fuji II LC, microhardness was decreased from the center to the periphery in all light sources(p<0.05).

  • PDF

A STUDY ON THE MODE OF POLYMERIZATION OF LIGHT-CURED RESTORATIVE MATERIALS CURED WITH PLASMA ARC LIGHT CURING UNIT (Plasma arc light curing unit을 이용한 광중합형 수복재의 중합양상)

  • Woo, Youn-Sun;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.2
    • /
    • pp.262-269
    • /
    • 2002
  • The purpose of this study was to compare the effect of distance of light tip to resin surfaces and exposure time on the polymerization of surface and 2 mm subsurface of composite resins cured with two light sources; conventional halogen light (XL 3000, 3M, U.S.A.) and plasma arc light (Flipo, LOKKI, France) and compare the uniformity of polymerization from the center to the periphery of resin surfaces according to polymerization diameter cure with two light sources. From the experiment, the following results were obtained. 1. Difference of relative light intensity decrease in plasma arc light smaller than that of conventional halogen light(p<0.05). 2. In all groups, microhardness of top surfaces was decreased when distance of the light tip to resin surfaces is more than 2mm and increased according to increase of exposure time(p<0.05). 3. Difference of microhardness of the 2mm subsurface was rapidly decreased when distance of light tip to resin surfaces is more than 4mm(except, plasma arc light exposure time of 3 seconds). and the distance of light tip to resin surfaces and exposure time more affected 2mm subsurface rather than top surface(p<0.05). 4. Although exposure time was increased, difference of microhardness of the 2mm subsurface with the distance of light tip to resin surfaces was relatively high in groups between below 4mm and 6 mm(p<0.05). 5. Plasma arc light exposure time of 6 to 9 seconds produced microhardness values and microhardness change according to various distance similar to those produced with 40 to 80 second exposure to a conventional halogen light(p>0.05). 6. In all groups, microhardness was decreased gradually from the center to the periphery of resin surfaces(p<0.05).

  • PDF

EFFECT OF SOFT-START LIGHT CURING ON THE POLYMERIZATION AND THE CONTRACTION STRESS OF COMPOSITE RESIN (완속기시(Soft-start) 광조사 방식이 복합레진의 중합 및 수축응력에 미치는 효과)

  • Wee, You-Min;Oh, You-Hyang;Lee, Nan-Young;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.332-343
    • /
    • 2005
  • The purpose of this study was to evaluate the influence of soft-start light curing on contraction stress and hardness of composite resin. Composite resin mold was cured using the one-step continuous curing method with three difference light sources; conventional halogen light curing for 40 seconds at $400\;mw/cm^2$, plasma arc light curing for 6 seconds at $1300\;mW/cm^2$ and LED light curing for 10 seconds at $7The purpose of this study was to evaluate the influence of soft-start light curing on contraction stress and hardness of composite resin. Composite resin mold was cured using the one-step continuous curing method with three difference light sources; conventional halogen light curing for 40 seconds at . For the soft-start curing method ; 2 seconds light exposure at $650\;mW/cm^2$ followed by 3 seconds at $1300\;mW/cm^2$ and exponential increase with 5 seconds followed by 10 seconds at $700\;mW/cm^2$ were used. Contraction stress was measured using strain gauge method and Vickers hardness was measured 24 hours after polymerization at the top and bottom of specimens. Resin-acrylic interfaces were observed using a scanning electron microscope(SEM). The results of present study can be summarized as follows: 1. Contraction stresses at 10 min after polymerization were significantly reduced with the soft-start curing both in plasma and LED light sources(P<0.05). 2. Plasma light curing with soft-start resulted in not only the lowest contraction stress, but also the lowest hardness(P<0.05) 3. LED light curing with soft-start showed lower contraction stress than the one-step continuous halogen and LED light curing(P<0.05). 4. Microhardness of specimens cured by LED light with soft-start was equivalent to that of cured by the one-step continuous halogen and LED light(P>0.05). 5. Curing by LED light with soft-start and conventional halogen light resulted in better marginal sealing than plasma light and one-step LED light curing.

  • PDF

A STUDY ON THE SHEAR BOND STRENGTHS OF VISIBLE LIGHT-CURED GLASS IONOMER CEMENT WITH SEVERAL LIGHT-CURING UNITS (수종의 광중합기를 이용한 교정용 광중합형 글라스 아이오노머 시멘트의 전단 결합 강도에 관한 연구)

  • Kim, Min-Soo;You, Seoung-Hoon;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.81-90
    • /
    • 2007
  • The purpose of this study was to assess the effect of light-tip distance on the shear bond strength of a visible light-cured glass ionomer cement(Fuji Ortho LC ; GC, Japan) cured with three different light curing units : a halogen light(Elipar Trilight ; 3M ESPE, Seefeld, Germany), a Light Emitting Diode (LED, Elipar Freelight2 ; 3M ESPE, Seefeld, Germany) and a plasma arc light (Flipo ; LOKKI, France). 1. When used at a distance of 0mm from the bracket, the three light curing units showed no statistically different shear bond strengths. At distance of 3 and 6mm, no significant differences were found between the halogen and plasma arc lights, but both had significantly higher shear bond strengths than the LED light. 2. The halogen light and plasma arc light showed that no significant differences in bond strength were found among the three distances. Using the LED light, a greater light-tip distance produced significantly lower shear bond strengths.

  • PDF

MICROLEAKAGE IN RESIN COMPOSITE POLYMERIZED WITH VARIOUS LIGHT CURING UNITS (수종의 광중합기에 의한 복합레진 중합시 미세누출에 관한 연구)

  • Park, Sung-Jin;Kim, Dae-Eup;Lee, Kwang-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.4
    • /
    • pp.604-610
    • /
    • 2005
  • This study was to evaluate the effects of several light curing units on the microleakage of composite resin restorations in primary teeth. The types of curing units were traditional low intensity halogen light(Optilux 360), plasma arc light(Filpo) low heat plasma arc light(Aurys) and high intensity LED(Freelight 2). After preparing cavities on sound primary teeth, cavities were filled with composite resin(Z100) using the same resin bond agent(Scotchbond Multi-Purpose) and were cured with each curing light system. After storing each specimen in sterile water for 24 hours, thermal circulation was done 1,000 times followed by pigmentation using 2% methylene blue solution. Each specimen was sliced and the degree of pigmentation was graded. When microleakage is graded, the average of Aurys was 0.95 which was the lowest and Freelight 2(1.05), Filpo(1.25), Optilux 360(1.30) followed. But values were not shown statistically significant difference (P>0.05). The results suggest that the newly developed curing units which has advantage in children by decreasing discomfort and procedure time can increase the microleakage of the composite resin.

  • PDF