• Title/Summary/Keyword: 한반도의 지질

Search Result 370, Processing Time 0.027 seconds

Geochemistry of Geothermal Waters in Korea: Environmental Isotope and Hydrochemical Characteristics I. Bugok Area (한반도 지열수의 지화학적 연구: 환경동위원소 및 수문화학적 특성 I. 부곡 지역)

  • Yun, Seong-Taek;Koh, Yong-Kwon;Kim, Chun-Soo;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.185-199
    • /
    • 1998
  • Hydrogeochemical and environmental isotope studies were undertaken for various kinds of water samples collected in 1995-1996 from the Bugok geothermal area. Physicochemical data indicate the occurrence of three distinct groups of natural water: Group I ($Na-S0_4$ type water with high temperatures up to $77^{\circ}C$, occurring from the central part of the geothermal area), Group II (warm $Na-HCO_{3}-SO_{4}$ type water, occurring from peripheral sites), Group III ($Ca-HCO_3$ type water, occurring as surface waters and/or shallow cold groundwaters). The Group I waters are further divided into two SUbtypes: Subgroup Ia and Subgroup lb. The general order of increasing degrees of hydrogeochemical evolution (due to the degrees of water-rock interaction) is: Group III$\rightarrow$Group II$\rightarrow$Group I. The Group II and III waters show smaller degrees of interaction with rocks (largely calcite and Na-plagioclase), whereas the Group I waters record the stronger interaction with plagioclase, K-feldspar, mica, chlorite and pyrite. The concentration and sulfur isotope composition of dissolved sulfate appear as a key parameter to understand the origin and evolution of geothermal waters. The sulfate was derived not only from oxidation of sedimentary pyrites in surrounding rocks (especially for the Subgroup Ib waters) but also from magmatic hydrothermal pyrites occurring in restricted fracture channels which extend down to a deep geothermal reservoir (typically for the Subgroup Ia waters). It is shown that the applicability of alkaliion geothermometer calculations for these waters is hampered by several processes (especially the mixing with Mg-rich near-surface waters) that modify the chemical composition. However, the multi-component mineral/water equilibria calculation and available fluid inclusion data indicate that geothermal waters of the Bugok area reach temperatures around $125^{\circ}C$ at deep geothermal reservoir (possibly a cooling pluton). Environmental isotope data (oxygen-18, deuterium and tritium) indicate the origin of all groups of waters from diverse meteoric waters. The Subgroup Ia waters are typically lower in O-H isotope values and tritium content, indicating their derivation from distinct meteoric waters. Combined with tritium isotope data, the Subgroup Ia waters likely represent the older (at least 45 years old) meteoric waters circuated down to the deep geothermal reservoir and record the lesser degrees of mixing with near-surface waters. We propose a model for the genesis and evolution of sulfate-rich geothermal waters.

  • PDF

Aeromagnetic Interpretation of the Southern and Western Offshore Korea (한국 서남근해에 대한 항공자력탐사 해석)

  • Baag Czango;Baag Chang-Eob
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.51-57
    • /
    • 1994
  • Analysis of the aeromagnetic data aquired by US Navy in the year 1969 permits us to predict a new sedimentary basin, Heugsan Basin, south of the known Gunsan Basin in Block Ⅱ. The basin appears to consist of three sub-basins trending NNW-SSE. The results of our analysis provide not only an independent assessment of the Gunsan Basin, but also new important information on the tectonic origin and mechanism for the two basins as well as for the entire region. The basin forming tectonic style is interpreted as rhombochasm associated with double overstepped left-lateral wrench faults. From the magnetic evidence, a few NE-SW trending major onshore faults are extended to the study area. We also interpreted the nature of the faults to be left-lateral wrenches. This new gross structural style is consistent with the results of recent Yeongdong Basin analysis by Lee. The senses of fault movement are also supported by the paleomagnetic evidence that the Philippine Sea had experienced an 80-degree clockwise rotation since the Eocene. Based on a 2 $\frac{1}{2}$ model study the probable maximum thickness of the sediments in the Gunsan Basin is approximately 7500 meters. We believe that the new Heugsan Basin was left unidentified because a high velocity layer may be overlying the basin. Because the overall structural configuration of the Heugsan Basin appears to be favorable for hydrocarbon accumulation, a detailed airborne magnetic survey is recommended in the area in order to verify the magnetic expression of this thick basin. A detailed subsequent marine gravity survey is also recommended in order to delineate the sedimentary section and to acquire supplemental data to the magnetic method only if an overlying high velocity layer is confirmed. Otherwise a high energy source seismic survey may be more effective.

  • PDF

Dinosaur Track-Bearing Deposits at Petroglyphs of Bangudae Terrace in Daegokcheon Stream, Ulju (National Treasure No. 285): Occurrences, Paleoenvironments, and Significance in Natural history (국보 제285호 울주 대곡리 반구대 암각화 지역의 공룡발자국 화석층 : 산상, 고환경 및 자연사적 가치)

  • Kim, Hyun Joo;Paik, In Sung;Lim, Jong-Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.2
    • /
    • pp.46-67
    • /
    • 2014
  • The Dinosaur track-bearing deposits recently found at Bangudae Petroglyph site in Ulju (National Treasure No. 285) have been studied in the aspects of sedimentology, paleoenvironments, and significance in natural history. The dinosaur tracks occur in the Daegu Formation (late Early Cretaceous), and over 80 footprints including 43 ornithopod footprints, 36 sauropod footprints, and 2 theropod footprints are preserved in this tracksite. The track-bearing deposits consist of irregularly interlaminated siltstone and mudstone, calcareous sandy to silty mudstone, thin-bedded tuffaceous sandstone, planar- to cross-laminated sandstone, and thin- to medium-bedded graded sandstone, and they are interpreted to be sheetflood deposits on an alluvial plain. Diverse types of ripples and mudcracks, rainprints, and invertebrate trace fossils are observed in these deposits, and the crest-lines of wave ripples do not show preferred orientation. Dinosaur footprints occur as true prints, underprints, overtracks, and casts on the bedding surfaces, and the orientation of trackways are scattered. It is interpreted that paleoclimatic condition of the track-bearing deposits were semiarid with alternation of wetting and drying periods, and that dinosaurs frequented small and shallow ponds during wetting periods and recorded their tracks on an alluvial plain. The frequent occurrence of dinosaur tracks in study area indicates that the Cretaceous deposits around Daegokcheon Stream are very useful sedimentological and paleontological records to understand the paleoecology and paleoenvironments during the dinosaur age in Korean Peninsula. Consequently the dinosaur track-bearing deposits around Daegokcheon Stream should be further studied in sedimentary geology and paleontology in order to enhance cultural heritage value of the Petroglyphs of Bangudae Terrace as the World Heritage.

Development History of Neotectonic Fault Zone in the Singye-ri Valley, Oedong-eup, Gyeongju, Korea (경주시 외동읍 신계리 계곡에 발달하는 신기 단층대 발달사)

  • Kang, Ji-Hoon;Son, Moon;Ryoo, Chung-Ryul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.349-359
    • /
    • 2020
  • The Ulsan Fault Zone (UFZ) of NNW trend is developed in the Gyeongsang Basin, the southeastern part of the Korean Peninsula, and the Quaternary faults have been found around the UFZ. The faults generally thrust the Bulguksa igneous rocks of Late Cretaceous-Early Tertiary upon the Quaternary deposits or are developed within the Quaternary deposits. They mainly show the reverse-slip sense of top-to-the west movement. The lines connecting the their outcrop sites show a zigzag-form which is similar to the orientation of their fault surfaces which show the various trends, like (W)NW, N-S, (E)NE, ENE trends. The E-W trending dextral strike(-slip) fault is found in the Quaternary deposits of the Singye-ri valley. It cuts the N-S trending reverse fault and are cut by the N-S trending thrust fault again. Two types of at least two times of Quaternary tectonic movements related to the formation of neotectonic fault zone in the Singye-ri valley are considered from such the geometric and kinematic characteristics of Quaternary faults. One is the reverse faulting of N-S trend by the E-W directed 1st compression and associated the strike-slip tear faulting of E-W trend, and then the thrust faulting of N-S trend by the E-W directed 2nd compression. The other is the reverse faulting of N-S trend, and then the dextral strike-slip faulting of E-W trend by the NW-SE directed compression, and then the thrust faulting of N-S trend. In this paper is suggested the development history of Singye-ri neotectonic fault zone on the basis of the various orientations of Quaternary fault surfaces around the UFZ, and the zigzag-form connecting line of their outcrop sites, and the compressive arc-shaped lineaments which convex to the west reported recently in the Yangsan Fault Zone.

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.

Occurrence and Chemical Composition of W-Bearing Rutile from the Unsan Au Deposit (운산 금 광상에서 산출되는 함 텅스텐 금홍석의 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.115-127
    • /
    • 2020
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong and Kwangyang) in Korea. The deposit consists of Au-bearing quartz veins filling fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it might be an orogenic-type. Based on its mineral assemblages and quartz textures, quartz veins are classified into 1)galena-quartz, 2)pyrrhotite-quartz, 3)pyrite-quartz, 4)pegmatic quartz, 5)muscovite-quartz, and 6)simple quartz vein types. The pyrite-quartz vein type we studied shows the following alteration features: sericitization, chloritization, and silicification. The quartz vein contains minerals including white quartz, white mica, chlorite, pyrite, rutile, calcite, monazite, zircon, and apatite. Rutile with euhedral or medium aggregate occur at mafic part from laminated quartz vein. Two types of rutile are distinguishable in BSE image, light rutile is texturally later than dark rutile. Chemical composition of rutile has 89.69~98.71 wt.% (TiO2), 0.25~7.04 wt.% (WO3), 0.30~2.56 wt.% (FeO), 0.00~1.71 wt.% (Nb2O5), 0.17~0.35 wt.% (HfO2), 0.00~0.30 wt.% (V2O3), 0.00~0.35 wt.% (Cr2O3) and 0.04~0.25 wt.% (Al2O3), and light rutile are higher WO3, Nb2O5 and FeO compared to the dark rutile. It indicates that dark rutile and light rutile were formed at different stage. The substitution mechanisms of dark rutile and light rutile are suggested as followed : dark rutile [(V3+, Cr3+) + (Nb5+, Sb5+) ↔ 2Ti4+, 4Cr3+ (or 2W6+) ↔ 3Ti4+ (W6+ ↔ 2Cr3+), V4+ ↔ Ti4+], light rutile [2Fe3+ + W6+ ↔ 3Ti4+, 3Fe2+ + W6+ ↔ Ti4+ + (V3+, Al3+, Cr3+) +Nb5+], respectively. While the dark rutile was formed by cations including V3+, V4+, Cr3+, Nb5+, Sb5+ and W6+ by regional metamorphism of hostrock, the postdating light rutile was formed by redistribution of cations from predating dark rutile and addition of Fe2+ and W6+ from Au-bearing hydrothermal fluid during ductile shear.

Mineralogy and Mineral-chemistry of REE Minerals Occurring at Mountain Eorae, Chungju (충주 어래산 일대에서 산출하는 희토류 광물의 광물학적 및 광물화학적 특성)

  • You, Byoung-Woon;Lee, Gill Jae;Koh, Sang Mo
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.643-659
    • /
    • 2012
  • The Chungju Fe-REE deposit is located in the Kyemyeongsan Formation of the Ogcheon Group. The Kyemyeongsan Formation includes meta-volcanic rocks and pegmatite hosted REE deposit which show different kind of REE-containing minerals. The meta-volcanic rocks hosted REE deposits' main REE minerals are allanite, zircon, apatite, and sphene, whereas the pegmatite hosted REE deposits is mainly composed of fergusonite, and karnasurtite, zircon, thorite. The meta-volcanic rock hosted major REE mineral is allanite as the form of aggregation and contains 23.89-29.19 wt% TREO (Total Rare Earth Oxide), 4.71-9.92 wt% $La_2O_3$, 11.30-14.33 wt% $Ce_2O_3$, 0.11-0.29 wt% $Y_2O_3$, 0.15-0.94 wt% $ThO_2$, as a formula of (Ca, Y, REE, Th)$_{2.095}$(Mg, Al, Ti, Mn, $Fe^{3+})_{2.770}(SiO_4)_{2.975}(OH)$. Accompanying REE in a coupled substitution for $Ca^{2+}$ (M1 site) and $Al^{3+}-Fe^{2+}$ (M2 site) leads to a large chemical variety. Due to the allanite's high contents of Fe, it belongs to Ferrialanite. The pegmatite hosted deposit's domi-nant REE mineral is fergusonite as prismatic or subhedral grains associated with zircon, fluorite and karnasurtite. Geochemical composition of the fergusonite($YNbO_4$) suggests substitution of Y-REE and Y-Th in A-site, and Nb-Ta-Ti in B-site, furthermore the proportion of $Y_2O_3$ and $Nb_2O_5$ is oddly 1:1.5 comparing to the ideal ratio 1:1 and Nb is higher than Y, also A-site Y actively substitutes with REE. Karnasurtite in pegmatite variously ranges 9.16-22.88 wt% $Ce_2O_3$, 2.15-9.16 wt% and $La_2O_3$, 0.44-10.8 wt% $ThO_2$, as a calculated formula (Y, REE, Th, K, Na, Ca)$_{1.478}(Ti, Nb)_{1.304}$(Mg, Al, Mn, $Fe^{3+})_{0.988}$(Si, P)$_{1.431}O_7(OH)_4{\cdot}3H_2O$. Firstly the 870-860 Ma is the initial age of the supercontinent Rhodinia dispersal and subsequent A-1 type volcanism, which contains Fe, REE, and HFS(High Field Strength elements; Nb, Zr, Y etc.) elements in Fe-rich meta-volcanic rocks dominant Kyemyeongsan Formation, might mineralized allanite. Another synthesis is that regional metamorphism at late Paleozoic 300-280 Ma(Cho et al., 2002) might cause allanite mineralization. Also pegmatite REE mineralization highly related to the granite intrusion over the Chungju area in Jurassic(190 Ma; Koh et al., 2012). Otherwise above all, A-1 type volcanism at the same time of the Kyemyeongsan Formation development, regional metamorphism and pegmatite, might have caused REE mineralization. Although REE ore bodies display a close spatial association, each ore bodies display temporal distinction, different mineral assemblage and environment of ore formation.

Occurrence and Chemical Composition of Dolomite from Komdok Pb-Zn Deposit (검덕 연-아연 광상의 돌로마이트 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.107-120
    • /
    • 2021
  • The Komdok Pb-Zn deposit, which is the largest Pb-Zn deposit in Korea, is located at the Hyesan-Riwon metallogenic zone in Jiao Liao Ji belt included Paleoproterozoic Macheolryeong group. The geology of this deposit consists of Paleoproterozoic metasedimentary rocks, Jurassic Mantapsan intrusive rocks and Cenozoic basalt. The Komdok deposit which is a SEDEX type deposit occurs as layer ore and vein ore in the Paleoproterozoic metasedimentary rocks. Based on mineral petrography and paragenesis, dolomites from this deposit are classified four types (1. dolomite (D0) as hostrock, 2. early dolomite (D1) associated with tremolite, actinolite, diopside, sphalerite and galena from amphibolite facies, 3. late dolomite (D2) associated with talc, calcite, quartz, sphalerite and galena from amphibolite facies, 4. dolomite (D3) associated with white mica, chlorite, sphalerite and galena from quartz vein). The structural formulars of dolomites are determined to be Ca1.00-1.20Mg0.80-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D0), Ca1.00-1.02M0.97-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D1), Ca0.99-1.03Mg0.93-0.98Fe0.01-0.05Mn0.00-0.01As0.00-0.01(CO3)2(D2) and Ca0.95-1.04Mg0.59-0.68Fe0.30-0.36Mn0.00-0.01 (CO3)2(D3), respectively. It means that dolomites from Komdok deposit have higher content of trace elements (FeO, MnO, HfO2, ZnO, PbO, Sb2O5 and As2O5) compared to the theoretical composition of dolomite. These trace elements (FeO, MnO, ZnO, Sb2O5 and As2O5) show increase and decrease trend according to paragenetic sequence, but HfO2 and PbO elements no show increase and decrease trend according to paragenetic sequence. Dolomites correspond to Ferroan dolomite (D0, D1 and D2), and Ferroan dolomite and ankerite (D3), respectively. Therefore, 1) dolomite (D0) as hostrock was formed by subsequent diagenesis after sedimentation of Paleoproterozoic (2012~1700 Ma) silica-bearing dolomite in the marine evaporative environment. 2) Early dolomite (D1) was formed by hydrothermal metasomatism origined metamorphism (amphibolite facies) associated with intrusion (1890~1680 Ma) of Paleoproterozoic Riwon complex. 3) Late dolomte (D2) was formed from residual fluid by a decrease of temperature and pressure. and dolomite (D3) in quartz vein was formed by intrusion (213~181 Ma) of Jurassic Mantapsan intrusive rocks.

The Estimation Model of an Origin-Destination Matrix from Traffic Counts Using a Conjugate Gradient Method (Conjugate Gradient 기법을 이용한 관측교통량 기반 기종점 OD행렬 추정 모형 개발)

  • Lee, Heon-Ju;Lee, Seung-Jae
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.1 s.72
    • /
    • pp.43-62
    • /
    • 2004
  • Conventionally the estimation method of the origin-destination Matrix has been developed by implementing the expansion of sampled data obtained from roadside interview and household travel survey. In the survey process, the bigger the sample size is, the higher the level of limitation, due to taking time for an error test for a cost and a time. Estimating the O-D matrix from observed traffic count data has been applied as methods of over-coming this limitation, and a gradient model is known as one of the most popular techniques. However, in case of the gradient model, although it may be capable of minimizing the error between the observed and estimated traffic volumes, a prior O-D matrix structure cannot maintained exactly. That is to say, unwanted changes may be occurred. For this reason, this study adopts a conjugate gradient algorithm to take into account two factors: estimation of the O-D matrix from the conjugate gradient algorithm while reflecting the prior O-D matrix structure maintained. This development of the O-D matrix estimation model is to minimize the error between observed and estimated traffic volumes. This study validates the model using the simple network, and then applies it to a large scale network. There are several findings through the tests. First, as the consequence of consistency, it is apparent that the upper level of this model plays a key role by the internal relationship with lower level. Secondly, as the respect of estimation precision, the estimation error is lied within the tolerance interval. Furthermore, the structure of the estimated O-D matrix has not changed too much, and even still has conserved some attributes.

Seasonal Variation of the Quantity and Quality of Seston as Diet Available to Suspension-Feeders in Gosung and Kangjin Bays of Korea (고성만과 강진만에서 현탁물 섭식자에 유용한 입자물질 양과 질의 계절 변동)

  • LEE Pil-Yong;KANG Chang-Keun;CHOI Woo-Jeung;YANG Han-Seob
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.4
    • /
    • pp.340-347
    • /
    • 2001
  • Seasonal variation of the elemental and biochemical composition of the suspended particulate matter (SPM) was investigated in terms of quantity and quality of diets for suspension feeders from July 1999 to August 2000 in two coastal bay systems of Gosung and Kangjin Bays in Korea. No clear patterns in the seasonal variations of SPM concentration were found in these two bay systems. The results indicated that the seasonal variation of SPM could not be considered the variation of food available to suspension-feeders. The simultaneous peaks in chlorophyll a and biochemical components in summer indicated that the quantity of the particulate organic matter primarily depended on phytoplankton productivity. However, no correlation between chlorophyll a and biochemical components [particulate protein (PPr), carbohydrate (PCHO) and lipid] were found, indicating that other processes might also contribute to the particulate organic matter in the period when the phytoplankton biomass was low. High C: Chl a and C:N, and carbohydrate peaks during the autumn to spring period suggested that resuspension of surface sediments was a probable process to supply the particulate organic matter. The food material, represented by summing up the total quantity of three biochemical components, was highest in spring with minor peaks during the period from autumn to the next spring, The food index, calculated as the ratio of food material to total SPM, did not generally exceed $6\%$ with short peaks during the year. Therefore, nutritional quality of SPM in the bays are relatively poor than in other more productive coastal waters in the world. Our results confirm that the measurement of a single chemical variable cannot describe fully the nutritive value of the seston available to suspension-feeders as previously proposed, and the biochemical composition of SPM can provide effective information on its origin and nutritive Quality.

  • PDF