• Title/Summary/Keyword: 한문

Search Result 791, Processing Time 0.026 seconds

Durability Analysis due to the Shape Change of Universal Joint (유니버셜 조인트의 형상 변화에 따른 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.69-74
    • /
    • 2013
  • According to the axial torsion applied at power transmission and the vibration from the roughness of road surface, this paper analyzes the stresses on two kinds of universal joint model. As stress and deformation at model 2 becomes smaller than model 1 on structural analysis, model 2 is more stabilized than model 1. The natural frequencies at model 1 and 2 are 7,040 and 9,540 Hz respectively. As the natural frequency range of model 2 becomes higher than model 1, model 2 becomes safer than model 1. Critical frequencies at these models are calculated through harmonic response analyses. On critical frequencies at model 1 and 2, the stress at model 2 becomes lower than 2 times as much as model 1 and the deformation at model 2 becomes lower than 4 times as much as model 1. Model 2 on durability is thought to become better than model 1. This study result is applied with the design of safe universal joint and it can be useful to improve the durability by predicting prevention against the deformation due to its vibration.

A Safety Study Using Impact and Fatigue Analyses According to Headrest Shape (헤드레스트의 형상에 따른 충돌 및 피로해석을 통한 안전성 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.39-44
    • /
    • 2018
  • The automotive headrest is intended to provide comfort, safety, convenience and durability to a vehicle's passengers and driver. In this study, impact and fatigue analyses were carried out for three headrest shape models-A, B and C. These models have the same material properties and the same force was applied to them. Impact and fatigue analyses demonstrated that all of the models obtained almost the exact same result values. This study found that all models had similar equivalent stress, deformation, fatigue life and main damage parts due to the fact that the shared same material properties. Better safety and fatigue life can be anticipated by changing the material of the headrest in order to secure more stable safety. An automotive headrest optimized for safety and durability is thought to have been developed through the impact and fatigue analyses of this study.

Strength and Fatigue Analysis of Universal Joint (유니버설조인트의 강도 및 피로 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.427-433
    • /
    • 2011
  • Chassis part in automotive body is affected by fatigue load at driving on the ground. Universal joint on this part is influenced extremely by the fatigue load. Fatigue life, damage and natural frequency are analyzed at universal joint under nonuniform fatigue load. The york part at universal joint is shown with the maximum equivalent stress and displacement of 60.755 MPa and 0.21086 mm as strength analysis. The possible life in use in case of 'SAE bracket' is the shortest among the fatigue loading lives of 'SAE bracket', 'SAE transmission' and 'Sine Wave'. The damage at loading life of 'SAE transmission' is the least among 3 types. The frequency of damage in case of 'Sine Wave' is 0.7 with the least among 3 fatigue loading life types but this case brings the most possible damage as 80% at the average stress of 0. Natural vibration at this model is analyzed with the orders of 1'st to 5'th and maximum frequency is shown as 701.73 Hz at 5'th order. As the result of this study is applied by the universal joint on chassis part, the prevention on fatigue damage in automotive body and its durability are predicted.

Structural Durability Analysis Related to Shape and Direction of Bicycle Frames (자전거 프레임의 형상과 방향에 따른 구조적 내구성 해석)

  • Cho, Jaeung;Han, Moonsik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.969-975
    • /
    • 2013
  • While accelerating, bicycle frames are subject to torsion forces and deformation. In this study, bicycle frame durability was evaluated by using structural, fatigue, and vibration experiments. Three types of models were designed by changing the frame configurations according to the shape and direction of a bicycle frame design. Because maximum equivalent stress was greatest at the saddle and at connected parts in Models 1, 2, and 3, these frame sections were most vulnerable to failure. Model 2 was the least safe, due to the increased total deformation and equivalent stresses in the top tube horizontal to the ground. Based on vibration and fatigue analysis results, Model 2 was also determined to be the least safe frame, because the head tube was placed slightly higher above the seat tube and inclined to $10^{\circ}$. These study results can be utilized in the design of bicycle frames by investigating prevention and durability against damage.

Simulation Analysis on the Property of Crack Propagation and Growth at High Tension Steel Plate (고장력 강판에서의 크랙 전파 및 성장특성에 대한 시뮬레이션 해석)

  • Kang, Byungmok;Kim, Jengo;Lee, Jaehoon;Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.471-477
    • /
    • 2015
  • In this study, the property of crack propagation and growth at high tension steel plate existed with center crack is investigated. The behaviors of fracture mechanics due to existence or not of hole near the center crack in specimen and the length of crack length are investigated when the load is applied at the one side end of specimen. Stress, deformation and deformation of this specimen are evaluated through simulation analysis. By the analysis results at this study, stress intensity factors are obtained. The damage happened at machine or structure with crack or defect can be estimated on the basis of study results.

Fatigue Analysis of Bike Brake under Nonuniform Load (불규칙 하중을 받는 자전거 브레이크의 피로 해석)

  • Cho, Ja-Eung;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.133-141
    • /
    • 2012
  • This study investigates structural and fatigue analyses of bike brake. Maximum equivalent stress of the model of mountain bike is 4 times as much as the model of general bike at static analysis. In cases of mountain and general bikes, maximum damage frequency at load of 'SAE bracket history' with the severest change of load becomes as much as 16 times than the most stable load of 'Sample history' among the nonuniform fatigue loads. In case of mountain bike, the possibility of maximum damage becomes 3% at the load of 'Sample history' with the average stress of 0 to $-3{\times}10^4$MPa and the amplitude stress of 0 to $10^4$MPa. In case of general bike, the possibility of maximum damage becomes 3% at the load of 'Sample history' with the average stress of 0 to $-0.8{\times}10^4$MPa and the amplitude stress of 0 to $0.2{\times}10^4$MPa. This stress state can be shown as 5 to 6 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The analysis result of this study can be effectively utilized for the safe design of bike brake.

Robust Design of Connecting Rod (커넥팅로드 강건 설계 방안)

  • Han, Moonsik;Yang, Chulho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.142-147
    • /
    • 2014
  • Finite element analysis along with DOE scheme has been performed to obtain robust design of connecting rod assembly. An analysis was conducted with five loading steps. Fatigue analysis was done using commercial software FEMFAT and fatigue safety factors at the interested regions such as shank area of small end and big end were calculated. 27 design cases using 3 factors with 3 levels are constructed by design of experiment. Each case is simulated to find the most influential factors. Response for this study, maximum Von-Mises stress, has been used to determine main factors of connecting rod assembly. Among the 3 factors, compression load affected the response greatly. However, bolt assembly load and width of shank flat area showed a little influence to the response. Interaction effects among factors considered did not occur. Connecting rod assembly considered in this study showed its sensitivity to the noise factor such as compression load rather than design factor such as width of flat shank area.

Structural Strength Analysis due to Rib Thickness of Lower Arm (로워암 리브 두께에 따른 구조 강도 해석)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.126-134
    • /
    • 2014
  • This study investigates the structural strength analysis due to rib thickness of lower arm. At structural analysis, model 1 has the most deformation by comparing three models. As most equivalent stress is shown at the part connected with wheel knuckle, the strength becomes weaker in cases of three models. At fatigue analysis, model 1 becomes most unstabilized among three models. Model 3 has most fatigue life and the next model is model 2. The range of maximum harmonic response frequencies becomes 140 to 175Hz in cases of three models. Because the critical frequency at model 3 becomes highest among three models but the stress exceeds yield stress, model 3 becomes most unstabilized at vibration durability. As models 1 and 2 has less than yield stress, these models become stabilized. Model 2 becomes most favorable by comparing three models at structural, fatigue and vibration analyses. This study result can be effectively utilized with the design of lower arm by investigating prevention against damage and its strength durability.

Study on Structural Safety Analysis of Upper Arm (어퍼암의 구조적 안전성 해석에 대한 연구)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.113-125
    • /
    • 2013
  • This study analyzes upper arm as the part of suspension through the structural analyses of fatigue. Maximum displacement is shown at the knuckle joint connected with the bracket of automotive body. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. Maximum life at 'Sample history' or 'SAE transmission' can be shown with 60 or 3.5 times more than 'SAE bracket history' respectively. In case of 'Sample history' with the average stress of $-4{\times}10^4$ to $4{\times}10^4$ MPa and the amplitude stress 0 to $8{\times}10^4$ MPa, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 or 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. This study result is applied with the design of upper arm and it can be useful at predicting prevention and durability against its damage.

Durability Study on Structural Strength due to the Shape of Excavator Wheel (굴삭기휠의 형상별 구조 강도에 대한 내구성 연구)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.166-174
    • /
    • 2013
  • This study investigates the strength durability on the results of structural and vibration analysis due to the shape of excavator wheel. As model 2 has the least stress by comparing three models with maximum equivalent stress, model 2 has most durability among three models at static analysis. Maximum equivalent stress is shown at the bottom part contacted with ground and this part on wheel is most affected by load in cases of all models. Safety factor can be decided with the value of 2.3 by considering the yield stress of this model. The range of maximum harmonic response frequencies becomes 6900 to 7000Hz. As model 2 has the least total deformation and equivalent stress at these critical frequencies, model 2 has the most durability at vibration analysis among three models. The structural and vibration analysis results in this study can be effectively utilized with the design of excavator wheel by investigating prevention and durability against its damage.