드라마를 시작으로 하여 시작된 중국에서의 한류는 최근 K-pop의 인기로 그 여파를 이어가고 있다. 이로 인해 한국상품 수출이 증가하고, 한국을 방문하거나, 한글을 배우려는 인구가 증가하였다. 본 연구에서는 드라마, 영화, K-pop, 게임 등 한류콘텐츠가 한국상품 구매의도, 한국방문의도, 한글학습의도 등에 미치는 영향을 실증적으로 분석하였다. 그 결과, 한류의 영향을 가장 많이 받은 것으로 파악되는 한국상품인 화장품과 의류의 구매의도에 영향을 미치는 한류콘텐츠는 드라마인 것으로 파악되었으며, K-pop도 유의한 영향을 미치는 것으로 분석되었다. 한국방문의도, 미용 성형관광과 한국음식구매의도에 있어서도 드라마에 대한 선호가 미치는 영향이 가장 높았으며 K-pop이 그 다음으로 유의한 영향을 미쳤다. 또한, 한글학습의도에 영향을 미친 한류콘텐츠는 드라마와 K-pop이었으며, 이 중 K-pop이 미친 영향력이 더 큰 것으로 분석되었다.
규칙 기반의 챗봇(Chatbot)은 개발자가 미리 지정한 키워드와 패턴을 통해 사용자의 의도(Intent)를 파악하기 때문에, 챗봇을 응용한 어플리케이션에서는 제한적인 활용도를 보인다. 본 논문에서는 위 문제를 해결하기 위해, 프레임워크 기반의 한글 자연어 처리 챗봇 성능 향상을 위한 점진 학습(Incremental Learning)을 제안한다. DialogFlow는 규칙 기반의 챗봇 프레임워크로서, 사용자 질의 패턴에 대한 사전 학습이 치명적이다. 제안하는 점진 학습 기법은 사용자 질의가 미리 학습되어 있지 않은 경우에도, 유사도 기반으로 질의의 의도를 결정할 수 있다. 이때 entity 조합과 기존에 학습된 질의들과의 유사도를 통해 의도를 결정하여, 프레임워크를 점진적으로 학습한다. 이를 적용하여 연세대학교 정보들을 제공하는 챗봇을 개발하고, 실험을 통해 제안된 점진 학습 기법은 기존 시스템보다 다양한 종류의 질의 처리가 가능하고, 더욱 빠른 응답 속도를 나타내는 것을 확인하였다. 또한 사용자가 증가함에 따라 점진 학습을 통해 성능이 더욱 증가하는 자가 학습 모형으로서의 우수함을 확인하였다.
자연어 이해 모델은 대화 시스템의 핵심적인 구성 요소로서 자연어 문장에 대해 그 의도와 정보를 파악하여 의도(intent)와 슬롯(slot)의 형태로 분석하는 모델이다. 최근 연구에서 의도와 슬롯의 추정을 단일 합동 모델(joint model)을 이용하여 합동 학습(joint training)을 하는 연구들이 진행되고 있다. 합동 모델을 이용한 합동 학습은 의도와 슬롯의 추정 정보가 모델 내에서 암시적으로 교류 되도록 하여 의도와 슬롯 추정 성능이 향상된다. 본 논문에서는 기존 합동 모델이 암시적으로 추정 정보를 교류하는 데서 더 나아가 모델 내의 의도와 슬롯 추정 정보를 명시적으로 교류하도록 모델링하여 의도와 슬롯 추정 성능을 높일 수 있는 교차 게이트 메커니즘(Cross Gated Mechanism)을 제안한다.
라벨 데이터 수집의 어려움에 따라 라벨이 없는 데이터로 학습하는 준지도학습, 비지도학습에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 그의 일환으로 Novel Intent Category Discovery(NICD) 문제를 제안하고 NICD 연구의 베이스라인이 될 모델을 소개한다. NICD 문제는 라벨이 있는 데이터와 라벨이 없는 데이터의 클래스 셋이 겹치지 않는다는 점에서 기존 준지도학습의 문제들과 차이가 있다. 제안 모델은 RoBERTa를 기반으로 두 개의 분류기를 추가하여 구성되며 라벨이 있는 데이터셋과 라벨이 없는 데이터셋에서 각각 다른 분류기를 사용하여 라벨을 예측한다. 학습방법은 2단계로 먼저 라벨이 있는 데이터셋으로 요인표현을 학습한다. 두 번째 단계에서는 교차 엔트로피, 이항교차 엔트로피, 평균제곱오차, 지도 대조 손실함수를 NICD 문제에 맞게 변형하여 학습에 사용한다. 논문에서 제안된 모델은 라벨이 없는 데이터셋에 대해 이미지 최고성능 모델보다 24.74 더 높은 정확도를 기록했다.
지능형 대화 시스템은 줄곧 서비스의 목표와 무관한 사용자 입력을 전달받아, 그 처리 성능을 의심받는다. 특히 종단간 대화 이해 생성 모델이나, 기계학습 기반 대화 이해 모델은 학습 시간대에 한정된 범위의 도메인 입력에만 노출됨으로, 사용자 발화를 자신이 처리 가능한 도메인으로 과신하는 경향이 있다. 본 연구에서는 대화 생성 모델이 처리할 수 없는 입력과 신뢰도가 낮은 생성 결과를 배제하기 위해 불확실성 정량화 기법을 대화 의도 분류 모델에 적용한다. 여러 번의 추론 샘플링이 필요 없는 실용적인 예측 신뢰도 획득 방법과 함께, 평가 시간대와 또다른 도메인으로 구성된 분포 외 입력 데이터를 학습에 노출시키는 것이 분포 외 입력을 구분하는데 도움이 되는지를 실험으로 확인한다.
음성 어시스턴트 시스템에서 발화의 의도를 분류하고 새로운 의도를 탐지하는 것은 매우 중요한 작업이다. 끊임없이 인입되는 새로운 발화로 인해 기존에 학습된 모델의 의도 분류 성능은 시간이 지남에 따라 점차 낮아진다. 기존 연구들에서 새로운 의도 발견을 위해 제안되었던 클러스터링 방법은 최적의 클러스터 수 결정과 명명에 어려움이 있다. 이러한 제한 사항을 보완하기 위해, 본 연구에서는 대규모 언어 모델 기반의 효과적인 의도 발견 방법을 제안한다. 이 방법은 기존 의도 분류기로 판단하기 어려운 발화에 새로운 의도 레이블을 할당하는 방법이다. 새롭게 인입되는 OOD(Out-of-Domain) 발화 내에서 오분류를 찾아 기존에 정의된 의도를 탐지하고, 새로운 의도를 발견하는 효율적인 프롬프팅 방법도 분석한다. 이를 액티브 러닝 전략과 결합할 경우, 분류 가능한 의도의 개수를 지속 증가시면서도 모델의 성능 하락을 방지할 수 있고, 동시에 새로운 의도 발견을 자동화 할 수 있다.
화자의 의도를 결정하는 문제는 대화 시스템에서 핵심적인 부분이다. 기존의 연구에서는 모델의 간소화를 위해 화자의 의도를 화행과 개념이라는 두 요소로 분리하여 분석하였다. 하지만 두 요소는 서로 밀접하게 관련되어 있기 때문에 모델의 간소화는 의도 분석 성능 저하의 원인이 되었다. 이런 문제점을 해결하기 위해 본 논문에서는 화자 의도 분류를 위한 재학습 방법을 제안한다. 제안된 방법은 화자의 의도를 분석하기 위해 화행 분류 모델과 개념열 분석 모델로 분리하여 분석한다. 학습 단계에서 화행 분류 모델은 개념열 분류 결과를 입력으로 사용하고 개념열 역시 마찬가지로 적용하였다. 목적 지항 대화를 대상으로 한 실험에서 제안된 시스템은 화자 의도 분류에서 최대엔트로피 모델과 지지 벡터 기계의 성능을 효과적으로 향상시켰다.
본 연구의 목적은 유아대상 한글학습용 애플리케이션의 내용을 전통적 언어교육에서 사용하는 언어 교수방법인 발음중심 교수방법과 총체적 교수방법으로 분류하여 비교분석함으로써 학습용 애플리케이션 내용 개선을 위한 시사점을 찾는 데에 있다. 이를 위해, 선행연구에서 사용된 유아용 애플리케이션 평가 척도에서 학습내용과 관련된 4개 하위영역을 선택하여 이를 수정, 보완하여 총 51개 애플리케이션을 대상으로 분석을 실시하였다. 그 결과, 총체적 교수방법의 애플리케이션이 발음중심 교수방법의 애플리케이션보다 인터랙션을 잘 활용하는 것으로 드러났다. 또한, 총체적 교수방법의 애플리케이션은 교육의도에 적합한 그래픽의 사용, 매력적인 캐릭터 및 피드백을 통한 능동적 학습활동 유도에서 발음중심 교수방법의 애플리케이션을 앞섰다. 이 연구결과는 효율적인 한글학습을 위한 양질의 애플리케이션 개발을 위한 기초자료로 활용될 수 있다.
본 논문에서는 분류 모델의 주류로 사용되고 있는 Encoder 기반 사전학습 모델(BERT, ALBERT, ELECTRA)의 내부 Encoder Layer가 하부 Layer에서는 Syntactic한 분석을 진행하고 상부 Layer로 갈수록 Semantic 한 분석을 진행하는 점, Layer가 구성됨에 따라 Semantic 정보가 Syntactic 정보를 개선해 나간다 점에 기반한 기존 연구 결과를 바탕으로 Encoder Layer를 구성함에 따라 어떻게 성능이 변화하는지 측정한다. 그리고 의도 분류를 위한 학습 데이터 셋도 분류하고자 하는 성격에 따라 Syntactic한 구성과 Semantic한 구성을 보인다는 점에 착안하여 ALBERT 및 ELECTRA를 이용한 의도 분류 모델을 구축하고 각 데이터 셋에 맞는 최적의 Encoder Layer 구성을 가지는 모델을 비교한 결과, 두 데이터 셋 간에 다른 Layer 구성을 보이는 점과 기존 모델보다 성능이 향상됨을 확인하였다.
띄어쓰기에 대한 오류는 한국어 처리 전반에 영향을 주므로 자동 띄어쓰기는 필수적인 요소이다. 글쓴이의 대부분은 띄어쓰기 오류를 범하지 않으므로 글쓴이의 의도가 띄어쓰기 시스템에 반영되어야 한다. 그러나 대부분의 자동 띄어쓰기 시스템은 모든 띄어쓰기 정보를 제거하고 새로이 공백문자를 추가하는 방법으로 띄어쓰기를 수행한다. 이런 문제를 완화하기 위해서 본 논문에서는 기계학습에서 글쓴이의 의도가 반영된 자질을 추가하는 방법을 제안한다. 실험을 위해서 CRFs(Conditional Random Fields)를 사용하여 기존 시스템과 사용자의 의도를 반영한 띄어쓰기 시스템과의 성능을 비교하고 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.