자연어 처리 분야에서 번역, 형태소 태깅, 질의응답, 감성 분석등 다양한 영역의 연구가 활발히 진행되고 있다. 감성 분석 분야는 Pretrained Model을 전이 학습하여 단일 도메인 영어 데이터셋에 대해 높은 분류 정확도를 보여주고 있다. 본 연구에서는 다양한 도메인 속성을 가지고 있는 이커머스 한글 상품평 데이터를 이용하고 단어 빈도 기반의 BOW(Bag Of Word), LSTM[1], Attention, CNN[2], ELMo[3], KoBERT[4] 모델을 구현하여 분류 성능을 비교하였다. 같은 단어를 동일하게 임베딩하는 모델에 비해 문맥에 따라 다르게 임베딩하는 전이학습 모델이 높은 정확도를 낸다는 것을 확인하였고, 17개 카테고리 별, 모델 성능 결과를 분석하여 실제 이커머스 산업에서 적용할 수 있는 감성 분석 모델 구성을 제안한다. 그리고 모델별 용량에 따른 추론 속도를 비교하여 실시간 서비스가 가능할 수 있는 모델 연구 방향을 제시한다.
Journal of the Korean Data and Information Science Society
/
제21권4호
/
pp.689-697
/
2010
본 연구에서는 비디오이미지로부터 추출된 텍스트영역으로부터 문자인식을 수행하였다. 비디오영상으로부터 추출된 문자열은 한글, 영어, 숫자, 특수문자 등으로 혼합되어 있거나, 또는 다양한 폰트와 크기, 그래픽 형태의 글자 존재, 영상의 기울어짐, 끊김, 잡영, 접촉, 저해상도의 글자 등으로 인하여 일반적인 문자인식에 비해 많은 어려움이 존재한다. 이와 같은 어려움을 극복하기위해 본 연구에서는 모든 글자에 대해서 인식하지 않고 가장 빈번하게 등장하는 글자만을 인식하고 나머지는 버리는 방법을 사용하였으며 지지도벡터기계와 정칙화판별분석의 2단계 문자인식 방법을 이용하여 인식률을 개선하였다. 또한 인식률이 좋지 못한 4형식과 5형식 글자에 대해 모음별로 중분류를 실시하였다. 실험결과 지지도벡터기계와 정칙화판별분석을 동시에 사용하는 방법이 다른 문자인식의 방법들보다 인식률이 우수하였으며, 부분적인 중분류의 방법을 이용한 경우 향상된 인식 성능을 나타냈다.
본 연구에서는 오픈 도메인에서 동작할 수 있는 질의 응답 시스템(Open-domain Question Answer ing System)을 구현하고 영어권 TREC에 참가한 결과를 기술하였다. 정답 유형을 18개의 상위 노드를 갖는 계층구조로 분류하였고, 질문 처리에서는 LSP(Lexico-Semantic Pattern)으로 표현된 문법을 사용하여 질문의 정답 유형을 결정하고, lemma 형태와 WordNet 의미, stem 형태의 3가지 유형의 키워드로 구성된 질의를 생성한다. 이 질의를 바탕으로, 패시지 선택에서는 문서검색 엔진에 의해 검색된 문서들을 문장단위로 나눠 정수를 계산하고, 어휘체인(Lexical Chain)을 고려하여 인접한 문장을 결합하여 패시지를 구성하고 순위를 결정한다. 상위 랭크의 패시지를 대상으로, 정답 처리에서는 질문의 정답 유형에 따라 품사와 어휘, 의미 정보로 기술된 LSP 매칭과 AAO (Abbreviation-Appositive-Definition) 처리를 통해 정답을 추출하고 정수를 계산하여 순위를 결정한다. 구현된 시스템의 성능을 평가하기 위해 TREC10 QA Track의 main task의 질문들 중, 200개의 질문에 대해 TRIC 방식으로 자체 평가를 한 결과, MRR(Mean Reciprocal Rank)은 0.341로 TREC9의 상위 시스템들과 견줄 만한 성능을 보였다.
근래에 와서 치료방사선학 영역에서의 전산화가 급속히 이루어지고 있으나 그 전산화의 대부분은 치료계획용 계산에 치우쳐져 있고 환자정보관리, 퇴원환자의 추적검사, 환자관리사무에 있어서의 전산화에 필요한 프로그램 등 환자관리에 필요한 프로그램은 매우 적으며, 상업적으로 개발된 프로그램은 일반화하기에는 많은 문제점을 갖고 있다. 이에 저자들은 16비트 개인용 컴퓨터를 이용하여 환자 현황 관리 프로그램을 시험 제작하였다. 1. 환자정보의 입력은 특별한 부호나 숫자를 사용하지 많고 현재 우리가 사용하는 영어나 한글을 그대로 쓸 수 있었다. 2 환자정보의 분석은 간단한 명령이나 키 동작으로 이루어질 수 있으며 특히 환자 현황에 대한 도표를 즉시 묘출할 수 있었다. 3. 환자관리정보의 내용은 기존 프린터를 이용하여 쉽게 문서화할 수 있으며, 학술발표, 강의재료 및 교육자료로 사용할 수 있었다.
본 논문에서는 단어의 순서와 문맥을 고려하는 특징을 추출하여 순환신경망(Recurrent Neural Network)으로 문서를 분류하는 방법을 제안한다. 단어의 의미를 고려한 word2vec 방법으로 문서내의 단어를 벡터로 표현하고, 문맥을 고려하기 위해 doc2vec으로 입력하여 문서의 특징을 추출한다. 문서분류 방법으로 이전 노드의 출력을 다음 노드의 입력으로 포함하는 RNN 분류기를 사용한다. RNN 분류기는 신경망 분류기 중에서도 시퀀스 데이터에 적합하기 때문에 문서 분류에 좋은 성능을 보인다. RNN에서도 그라디언트가 소실되는 문제를 해결해주고 계산속도가 빠른 GRU(Gated Recurrent Unit) 모델을 사용한다. 실험 데이터로 한글 문서 집합 1개와 영어 문서 집합 2개를 사용하였고 실험 결과 GRU 기반 문서 분류기가 CNN 기반 문서 분류기 대비 약 3.5%의 성능 향상을 보였다.
본 논문에서는 카메라로 획득한 문서영상에 대해 조명의 영향에 관계없이 고속으로 문자영역을 추출하는 알고리즘을 제안하였다. 카메라 문서는 스캐너 문서와는 달리 주변 환경이나 조명의 영향으로 인하여 문자영역을 추출하는 것이 매우 어렵다. 먼저 영상 사전처리 단계에서 컬러영상을 명도영상으로 변환한 후 조명의 영향에 무관하게 배경 그림으로부터 문자 영역을 정확히 추출하기 위해서 명도레벨 정규화를 사용하였다. 또한 배경 그림 및 잡음은 제거하고 문자 획의 손실 없이 문자 영역을 추출하기 위하여 국소-적응적-이진화-방법(local adaptive binarization method)을 새롭게 개발하여 문서영상을 이진화시켰다. 문자영역 추출 단계에서는 수평 및 수직 투영과 연결요소 정보에 의해 문자열, 단어 및 개별 문자 영역을 단계적으로 추출하였다. 제안된 방법의 타당성을 검증하기 위하여 ETRI에서 구축한 한글/영어/숫자/특수기호가 혼합된 현장 문서영상 DB를 가지고 실험해 보았다.
본 논문에서는 아라비안 숫자를 포함한 텍스트를 음성으로 합성하기 위하여, 숫자 형태와 분류사 그리고 숫자가 나오는 문맥에 따라 숫자를 자동으로 문자화할 수 있는 전처리 규칙을 설정하는데 목적을 둔다. 먼저 선행연구를 통해 숫자를 포함한 수사 및 수사표현의 읽기 규칙의 적용 범위 및 한계점을 살펴보고, 음성 합성을 위한 아라비안 숫자의 문자화 규칙을 설정하고자 한다. 현대 한국어에서 아라비안 숫자를 읽는 방식은 크게 고유어 방식과 한자어 방식이 있으며 단(單)단위에서는 영어가 사용되기도 한다. 또한 한자어 방식에서도 단위를 붙여 읽는 경우와 모든 수를 단 단위로 읽는 경우가 있으므로, 아라비안 숫자의 문자화를 단순한 규칙을 설정하여 자동화하기에는 중의성이 높다. 본 연구에서는 (1) 숫자 전 전치어(pre-numeral), (2) 기호를 포함한 숫자열의 표현 형식과 크기, (3) 단위 표현, (4) 숫자 후치어(post-numeral), (5) 분류사(classifier) (6) 분류사 후치어(post-classifier), (7) 수사표현 앞뒤 문맥에 따라, 아라비안 숫자표현이 문자화되는 방식을 살펴보았다. 분석 대상 말뭉치는 C 신문의 2000년 1월부터 2000년 4월까지 전체 기사 1,400건에서 숫자가 포함된 숫자표현 약 63,000개론 구성하였다. 패턴화된 구조 및 중의성이 없는 구조를 12가지로 밝히고 중의성이 있는 구조의 유형을 밝혔으며 분류사 후치어와의 결합 관계, 좌우 문맥정보를 통해 중의성 해결의 단서를 제시하고자 하였다.
본 논문에서는 웹과 같은 일반적인 도메인의 영한 자동 번역기를 특허용 영한 자동번역기로 특화하는 방법에 대해 기술한다. 특허용 영한 파동번역기로의 특화는 다음과 같은 절차에 의해 이루어진다: 1) 대용량 특허 문서에 대한 언어학적 특성 분석, 2) 대용량 특허문서 대상 전문용어 추출 및 대역어 구축, 3) 기존 번역사전 대역어의 특화, 4) 특허문서 고유의 번역 패턴 추출 및 구축, 5) 언어학적 특성 분석에 따른 번역 엔진 모듈의 특화 및 개선, 6) 특화된 번역 지식 및 번역 엔진 모듈에 따른 번역률 평가. 이와 같은 절차에 의해 만들어진 특허 영한 자동 번역기는 특허 전문번역가의 평가에 의해 전분야 평균 81.03%의 번역률을 내었으며, 분야별로는 기계분야(80.54%), 전기전자분야(81.58%), 화학일반분야(79.92%), 의료위생분야(80.79%), 컴퓨터분야(82.29%)의 성능을 보였으며 계속 개선 중에 있다. 현재 본 논문에서 기술된 영한 특허 자동번역 시스템은 산업자원부의 특허지원센터에서 변리사 및 특허 심사관이 영어 전기전자분야 특허 문서를 검색할 때 한국어 번역서비스를 제공받도록 이용되고 있으며($\underline{http://www.ipac.or.kr}$), 2007년에는 전분야 특허문서에 대한 영한 자동번역 서비스를 제공할 예정이다.
동사의 애매성 해소는 언어학의 여러 부문 중에서도 가장 실체가 불명확한 의미를 다루는 것이기 때문에 언어학뿐만 아니라 자연언어처리에 있어서도 가장 해결하기 어려운 문제 중에 하나이다. 애매성은 언어학에서 말하는 동음이의어와 다의어를 동시에 포괄하는 개념으로 정의된다. 단일어를 대상으로 한 이와 같은 분류는 비교적 명확한 반면 두 개의 언어 이상의 다국어를 대상으로 하는 기계번역용 사전과 같은 대역사전에 있어서는 동음이의어와 다의어의 구변은 경계가 불명확하여 의미에 기반한 대역어의 작성에 도움이 되지 않는다. 그 원인은 의미를 구성하는 세 가지 요소인 [실체], [개념], [표현]의 관점에서 [실체]와 [개념]은 어느 언어를 막론하고 보편적인 반면 [실체]와 [개념]을 최종적으로 실현하는 형대인 [표현]의 경우 각각의 언어에 따라 그 형태가 다르게 표출된다고 하는 사실 때문이다. [나무]라는 [실체]가 있다고 할 때 [나무]에 대한 [실체]와 [개념]은 언어를 초월해서 공통적이라고 할 수 있다. 한편, [개념]을 표현하는 실체인 [표현]은 언어에 따라 [namu](한국어), [ki](일본어), [tree](영어) 등과 같이 언어에 따라 자의적으로 [개념]을 표현하고 있다. [namu], [ki], [tree]가 같은 뜻을 나타낸다고 인식할 수 있는 것은 [개념]이 같기 때문이지 이들 각각의 [표현]이 의미적 연관성을 갖고 있기 때문은 아니다. 지금까지 의미를 다루는 연구에서는 이와 같은 관점이 결여됨으로 인해 의미의 다양성을 정확히 파악하는 데 한계가 있었으며 애매성 해소에 관한 연구도 부분적 시도에 그친 면이 적지 않다. 본고에서는 다국어를 대상으로 한 대역사전의 구축에 있어서 다의어와 동음이의어에 대한 종래의 분류의 문제점을 지적하고 나아가 애매성 해소의 한 방법론으로 활발히 이용되고 있는 시소러스의 분류체계의 한계를 지적한다. 나아가 이의 해결책을 한국어와 일본어의 대역사전의 구축에서 얻어진 경험을 바탕으로 제시한다.
본 논문은 게임 도메인에서 웹 코퍼스를 이용하여 감성사전을 구축하는 방법과 구축한 감성사전의 평가 결과를 기술한다. 감성사전 구축을 위해 먼저 트위터 형태소 분석기를 이용해 국내 한 포털 사이트의 게임 관련 웹 문서를 기반으로 어휘를 수집하여 감성 사전 어휘 목록을 만들었고, 목록에 있는 단어들 중 동사와 형용사 품사의 단어들에 대해 감성 사전을 구축하였다. 구축된 감성 사전의 평가를 위해 영어 기반의 Senti-word Net(SWN)을 한글로 번역한 한국어 SWN을 이용하여 정밀도와 재현율 값을 계산하였다. 평가 결과 긍정과 부정 감성의 F-1 값에 대한 평균이 형용사의 경우 0.85, 동사에 대해 0.77을 각각 보여 주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.