Annual Conference on Human and Language Technology
/
2021.10a
/
pp.453-456
/
2021
대화형 에이전트가 일관성 없는 답변, 재미 없는 답변을 하는 문제를 해결하기 위하여 최근 페르소나 기반의 대화 분야의 연구가 활발히 진행되고 있다. 그러나 한국어로 구축된 페르소나 대화 데이터는 아직 구축되지 않은 상황이다. 이에 본 연구에서는 영어 원본 데이터에서 한국어로 번역된 데이터를 활용하여 최초의 페르소나 기반 한국어 대화 모델을 제안한다. 전처리를 통하여 번역 품질을 향상시킨 데이터에 사전 학습 된 한국어 모델인 KoBERT와 KoELECTRA를 미세조정(fine-tuning) 시킴으로써 모델에게 주어진 페르소나와 대화 맥락을 고려하여 올바른 답변을 선택하는 모델을 학습한다. 실험 결과 KoELECTRA-base 모델이 가장 높은 성능을 보이는 것을 확인하였으며, 단순하게 사용자의 발화만을 주는 것 보다 이전 대화 이력이 추가적으로 주어졌을 때 더 좋은 성능을 보이는 것을 확인할 수 있었다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.280-283
/
2019
공손함은 인간 언어의 가장 흥미로운 특징 중 하나이며, 자연어처리 시스템이 인간과 자연스럽게 대화하기 위해 필수적으로 모델링해야 할 요소이다. 본 연구에서는 인간의 발화가 주어졌을 때, 이의 공손함을 판단할 수 있는 시스템을 구현한다. 이를 위해 딥러닝 방법인 양방향 LSTM 모델과, 최근 자연어처리 분야에서 각광받고 있는 BERT 모델에 대해 성능 비교를 수행하였다. 이 두 기술은 모두 문맥 정보를 반영할 수 있는 모델로서, 같은 단어라도 문맥 정보에 따라 의미가 달라질 수 있는 공손함의 미묘한 차이를 반영할 수 있다. 실험 결과, 여러 설정에 거쳐 BERT 모델이 양방향 LSTM 모델보다 더 우수함을 확인하였다. 또한, 발화가 구어체보다 문어체에 가까울 수록 딥러닝 모델의 성능이 더 좋은 것으로 나타났다. 제안된 두 가지 방법의 성능을 인간의 판단 능력과 비교해본 결과, 위키피디아 도메인에서 BERT 모델이 91.71%의 성능을 보여 인간의 정확도인 86.72%를 상회함을 확인하였다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.161-166
/
2021
본 연구는 한국어 문장 임베딩(embedding)에 담겨진 언어적 속성을 평가하기 위한 프로빙 태스크(Probing Task)를 소개한다. 프로빙 태스크는 임베딩으로부터 문장의 표층적, 통사적, 의미적 속성을 구분하는 문제로 영어, 폴란드어, 러시아어 문장에 적용된 프로빙 테스크를 소개하고, 이를 기반으로하여 한국어 문장의 속성을 잘 보여주는 한국어 문장 임베딩 프로빙 태스크를 설계하였다. 언어 공통적으로 적용 가능한 6개의 프로빙 태스크와 한국어 문장의 주요 특징인 주어 생략(SubjOmission), 부정법(Negation), 경어법(Honorifics)을 추가로 고안하여 총 9개의 프로빙 태스크를 구성하였다. 각 태스크를 위한 데이터셋은 '세종 구문분석 말뭉치'를 의존구문문법(Universal Dependency Grammar) 구조로 변환한 후 자동으로 구축하였다. HuggingFace에 공개된 4개의 다국어(multilingual) 문장 인코더와 4개의 한국어 문장 인코더로부터 획득한 임베딩의 언어적 속성을 프로빙 태스크를 통해 비교 분석한 결과, 다국어 문장 인코더인 mBART가 9개의 프로빙 태스크에서 전반적으로 높은 성능을 보였다. 또한 한국어 문장 임베딩에는 표층적, 통사적 속성보다는 심층적인 의미적 속성을 더욱 잘 담고 있음을 확인할 수 있었다.
Kim, Damrin;Kim, Hongjin;Park, Seongsik;Kim, Harksoo
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.264-269
/
2021
상호참조해결은 주어진 문서에서 상호참조해결의 대상이 될 수 있는 멘션을 추출하고, 같은 개체를 의미하는 멘션 쌍 또는 집합을 찾는 자연어처리 작업이다. 하나의 멘션 내에 멘션이 될 수 있는 다른 단어를 포함하는 중첩 멘션은 순차적 레이블링으로 해결할 수 없는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위해 멘션의 시작 단어의 위치를 여는 괄호('('), 마지막 위치를 닫는 괄호(')')로 태깅하고 이 괄호들을 예측하는 멘션 탐지 모델과 멘션 탐지 모델에서 예측된 멘션을 바탕으로 포인터 네트워크를 이용하여 같은 개체를 나타내는 멘션을 군집화하는 상호참조해결 모델을 제안한다. 실험 결과, 4개의 영어 대화 데이터셋에서 멘션 탐지 모델은 F1-score (Light) 94.17%, (AMI) 90.86%, (Persuasion) 92.93%, (Switchboard) 91.04%의 성능을 보이고, 상호참조해결 모델에서는 CoNLL F1 (Light) 69.1%, (AMI) 57.6%, (Persuasion) 71.0%, (Switchboard) 65.7%의 성능을 보인다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.539-545
/
2023
초거대 언어모델은 심화된 언어적 이해를 요구하는 여러 분야에 높은 영향력을 미치고 있으나, 그에 수반되는 편향성과 윤리성에 대한 우려 또한 함께 증대되었다. 특히 편향된 언어모델은 인종, 성적 지향 등과 같은 다양한 속성을 가진 개인들에 대한 편견을 강화시킬 수 있다. 그러나 이러한 편향성에 관한 연구는 대부분 영어 문화권에 한정적이며 한국어에 관한 연구 또한 한국에서 발생하는 지역 갈등, 젠더 갈등 등의 사회적 문제를 반영하지 못한다. 이에 본 연구에서는 ChatGPT의 내재된 편향성을 도출하기 위해 의도적으로 다양한 페르소나를 부여하고 한국의 사회적 쟁점들을 기반으로 프롬프트 집합을 구성하여 생성된 문장의 독성을 분석하였다. 실험 결과, 특정 페르소나 또는 프롬프트에 관해서는 지속적으로 유해한 문장을 생성하는 경향성이 나타났다. 또한 각 페르소나-쟁점에 대해 사회가 갖는 편향된 시각이 모델에 그대로 반영되어, 각 조합에 따라 생성된 문장의 독성 분포에 유의미한 차이를 보이는 것을 확인했다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.228-233
/
2023
인간의 수동 평가 시 시간과 비용의 소모, 주석자 간의 의견 불일치, 평가 결과의 품질 등 불가피한 한계가 발생한다. 본 논문에서는 맥락을 고려하고 긴 문장 입출력이 가능한 ChatGPT를 활용한 한국어 요약문 평가가 인간 평가를 대체하거나 보조하는 것이 가능한가에 대해 살펴보았다. 이를 위해 ChatGPT가 생성한 요약문에 정량적 평가와 정성적 평가를 진행하였으며 정량적 지표로 BERTScore, 정성적 지표로는 일관성, 관련성, 문법성, 유창성을 사용하였다. 평가 결과 ChatGPT4의 경우 인간 수동 평가를 보조할 수 있는 가능성이 있음을 확인하였다. ChatGPT가 영어 기반으로 학습된 모델임을 고려하여 오류 발견 성능을 검증하고자 한국어 오류 요약문으로 추가 평가를 진행하였다. 그 결과 ChatGPT3.5와 ChatGPT4의 오류 요약 평가 성능은 불안정하여 인간을 보조하기에는 아직 어려움이 있음을 확인하였다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.491-496
/
2023
사전학습 언어모델을 개선하여 고품질의 문장 표현(sentence representation)을 도출하기 위한 다양한 대조 학습 방법에 대한 연구가 진행되고 있다. 그러나, 대부분의 대조학습 방법들은 문장 쌍의 관계만을 고려하며, 문장 간의 유사 정도를 파악하는데는 한계가 있어서 근본적인 대조 학습 목표를 저해하였다. 이에 최근 삼중항 손실 (triplet loss) 함수를 도입하여 문장의 상대적 유사성을 파악하여 대조학습의 성능을 개선한 연구들이 제안되었다. 그러나 많은 연구들이 영어를 기반으로한 사전학습 언어모델을 대상으로 하였으며, 한국어 기반의 비지도 대조학습에 대한 삼중항 손실 함수의 실효성 검증 및 분석은 여전히 부족한 실정이다. 본 논문에서는 이러한 방법론이 한국어 비지도 대조학습에서도 유효한지 면밀히 검증하였으며, 다양한 평가 지표를 통해 해당 방법론의 타당성을 확인하였다. 본 논문의 결과가 향후 한국어 문장 표현 연구 발전에 기여하기를 기대한다.
Yejee Kang;Li Fei;Yeonji Jang;Seoyoon Park;Hansaem Kim
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.499-504
/
2023
본 연구에서는 민감한 개인정보의 유출과 남용 위험이 높아지고 있는 상황에서 정확한 개인정보 탐지 및 비식별화의 효율을 높이기 위해 개인정보 항목에 특화된 개체명 체계를 개발하였다. 개인정보 태그셋이 주석된 대화 데이터 4,981세트를 구축하고, 생성 AI 모델을 활용하여 개인정보 개체명 탐지 실험을 수행하였다. 실험을 위해 최적의 프롬프트를 설계하여 퓨샷러닝(few-shot learning)을 통해 탐지 결과를 평가하였다. 구축한 데이터셋과 영어 기반의 개인정보 주석 데이터셋을 비교 분석한 결과 고유식별번호 항목에 대해 본 연구에서 구축한 데이터셋에서 더 높은 탐지 성능이 나타났으며, 이를 통해 데이터셋의 필요성과 우수성을 입증하였다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.627-632
/
2023
대규모 언어 모델은 높은 연산 능력과 방대한 양의 데이터를 기반으로 탁월한 성능을 보이며 자연어처리 분야의 주목을 받고있다. 이러한 모델들은 다양한 언어와 도메인의 텍스트를 처리하는 능력을 갖추게 되었지만, 전체 학습 데이터 중에서 한국어 데이터의 비중은 여전히 미미하다. 결과적으로 이는 대규모 언어 모델이 영어와 같은 주요 언어들에 비해 한국어에 대한 이해와 처리 능력이 상대적으로 부족함을 의미한다. 본 논문은 이러한 문제점을 중심으로, 대규모 언어 모델의 한국어 처리 능력을 향상시키는 방법을 제안한다. 특히, Cross-lingual transfer learning 기법을 활용하여 모델이 다양한 언어에 대한 지식을 한국어로 전이시켜 성능을 향상시키는 방안을 탐구하였다. 이를 통해 모델은 기존의 다양한 언어에 대한 손실을 최소화 하면서도 한국어에 대한 처리 능력을 상당히 향상시켰다. 실험 결과, 해당 기법을 적용한 모델은 기존 모델 대비 nsmc데이터에서 2배 이상의 성능 향상을 보이며, 특히 복잡한 한국어 구조와 문맥 이해에서 큰 발전을 보였다. 이러한 연구는 대규모 언어 모델을 활용한 한국어 적용 향상에 기여할 것으로 기대 된다.
This study aimed to investigate the semantic preview effect in the parafoveal processing of words that are presented in advance in the parafoveal area ahead of the fixation point, benefiting word processing in the fovea. Using the boundary technique in eye-tracking experiments, 25 Chinese-Korean bilinguals, whose native language is Chinese, were presented with 96 sentences that contained a mix of Chinese and Korean, where Korean words were associated with Chinese characters semantically. The study aimed to determine whether a semantic preview effect could be extracted in reading. The experimental sentences were divided into four conditions: the same Korean native word condition (e.g., "나라" meaning "country"), the same Korean word with semantic equivalent in Chinese condition (e.g., "국가" meaning "country"), the same Chinese condition with semantic equivalent in Korean (e.g., "国家" meaning "country"), and the unrelated Chinese condition to the target word (e.g., "围裙" meaning "apron"). The results showed a preview effect in both the Korean word and Chinese word conditions, with a larger preview effect observed in the Chinese word condition compared to the Korean word condition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.