• Title/Summary/Keyword: 한국형 기동헬기

Search Result 37, Processing Time 0.023 seconds

Aerodynamic Calculations in Hover of KUH Rotor Blade (한국형 기동헬기 블레이드의 제자리 비행 공력 해석)

  • Kang, Hee-Jung;Kim, Seung-Ho;Jung, Mun-Seung;Lee, Hee-Dong;Kwon, Oh-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.25-28
    • /
    • 2008
  • An aerodynamic calculation in hover of KUH main rotor blade is performed using a three-dimensional unstructured hybrid mesh viscous flow solver. The flow solver utilizes a vertex-centered finite-volume scheme that is based on the Roe's flux-difference splitting with an implicit Jacobi/Gauss-Seidel time integration. The eddy viscosity are estimated by the Spalart-Allmaras one-equation turbulence model. A solution-adaptive mesh refinement technique is used for efficient capturing of the tip vortex. Calculations are performed at several operating conditions with varying collective pitch setting for KUH main rotor blade in hover. Good agreements are obtained between the present and other results using HOST and CAMRAD II in overall rotor performance. It is demonstrated that the present vertex-centered flow solver is an efficient and accurate tool for the assessment of rotor performance in hover.

  • PDF

Design and Verification of Mission Equipment Package System for Korean Utility Helicopter (한국형 기동헬기 임무탑재장비체계 설계 및 입증)

  • Kim, Sung-Woo;Lee, Byoung-Hwa;Yu, Yeon-Woon;Lee, Jong-Hoon;Yim, Jong-Bong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.388-396
    • /
    • 2011
  • Mission Equipment Package(MEP) system is a collection of avionic components that are integrated to perform the mission of the Korean Utility Helicopter(KUH). MEP system development is classified mission-critical embedded system but KUH MEP system developed including flight-critical data implementation. It is important to establish the good development and verification process for the successful system development. This paper describe the development and verification process in each phase for the KUH MEP system. MEP system design is verified through the qualification test, system failure test and compatibility test in System Integration Laboratory(SIL).

The Localization Development for Korean Utility Helicopter's On-Board Inert Gas Generation System (한국형 기동헬기 불활성가스발생장치 국산화 개발)

  • Ahn, Jong-Moo;Lee, Hee-Rang;Kang, Tae-Woo;Choi, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.662-669
    • /
    • 2017
  • Military rotary aircraft are heavily exposed to projectile environments due to their mission characteristics, and fires caused by fuel leaks after shooting are linked directly to the loss of human life. To improve the survivability of pilots and crews, the fuel tank in rotary aircraft must have gunfire resistance and anti-explosion characteristics. Gunfire resistance can be satisfied by applying a self-sealing cell to a fuel tank. Anti-explosion can be satisfied by reducing the oxygen concentration in an explosive area and suppressing the generation of combustible fuel vapor by minimizing the evaporation rate of the fuel by heat. A Korean utility helicopter applies anon-board inert gas generation system to meet the anti-explosion requirements for ballistic impact. The generator fills the fuel tank with an inert gas and reduces the oxygen concentration. This paper describes the overall development process of the OBIGGS developed in accordance with the localization process of weapon components. OBIGGS was developed/manufactured through domestic technology, and the performance was found to be equal to or better than that of the existing products through single performance tests and aircraft mounting tests.

Design of Aircraft Internal On-glass Antennas (항공기용 내장형 온-글래스 안테나 설계)

  • Kang, Woo-Joon;Choo, Ho-Sung;KIim, Young-Gi;Kang, Ho-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.65-71
    • /
    • 2009
  • In this paper, we propose an aircraft on-glass antenna for FM radio reception. To obtain broad matching bandwidth, we employed a multiple loop as the basic antenna structure, and the shape of the loops mimics the frame of a window in order to ensure pilots' field of view as large as possible. The detailed design parameters of the multi-loop structure were determined using a Pareto genetic algorithm with a full wave EM simulation tool. The optimized on-glass antenna was built and installed on a Korean utility helicopter (KUH) The measurement results showed a half power matching bandwidth of about 63.3 %, average vertical bore-sight gain of about -12.98 dBi in the FM band.

Assessment of Crashworthiness Performance for Fuel Tank of Rotorcraft (회전익 항공기용 연료탱크 내추락 성능 시험평가)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Lee, Jong-Won;Hwang, In-Hee;Hue, Jang-Wook;Shin, Dong-Woo;Jun, Pil-Sun;Jung, Tae-Kyung;Ha, Byung-Kun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.806-812
    • /
    • 2010
  • Fuel tanks for rotorcraft have a great influence on the survivability of crews. The philosophy of crashworthy rotorcraft design evolved from the long term effort of the US Army. US army established MIL-DTL-27422D for specifying detail requirements related to crash resistant fuel tank especially for military rotorcraft to prevent post crash fire which is the greatest threat to life in rotorcraft crash. Crashworthiness of the rotorcraft fuel tank could be guaranteed through the crash impact tests which are specified in the MIL-DTL-27422D. Fuel tanks for Korea Helicopter Program have been developed and tested according to MIL-DTL-27422D with minor modifications of flexible fittings. The present study shows some results of the mandatory crash impact tests of the fuel tanks to verify their performances.

A study on improvement of painting quality through a de-painting phenomenon of KUH-1 tail blade (한국형 기동헬기 꼬리 날개 디페인팅 현상을 통한 도장 품질 향상에 관한 연구)

  • Chang, In-Ki;Kim, Young-Jin;Seo, Hyun-Soo;Jeon, Boo-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.3
    • /
    • pp.325-338
    • /
    • 2014
  • Purpose: The purpose of this study was to explain de-painting phenomenon of KUH-1 tail blade and to propose useful solution of it by test. The proposed solution was evaluated by real flight, and then it applied to mass product to improve the paint qual ity of KUH-1 tail blade. Methods: This study investigated an adhesive ability of primer following surface sanding condition. The cross cut and scratch test were conducted to evaluate the adhesive strength. And the water flow test was designed to simulate a real flight condition under rain. Through water flow test, an optimal condition of tail blade to prevent a de-painting phenomenon was deduced. Finally, the improvement method was evaluated by real flight under rain. Results: The results of this study are as follows; The sequential polishing was most excellent method in primer painting quality. The results of test including cross cut, scratch and water flow showed that MIL-DTL-53039 paint with epoxy primer has excellent adhesive ability. To proof the effect of improvement, a real flight during a rain condition was conducted. Finally, the comparison between original and improved configuration was conducted. Conclusion: The painting quality of KUH-1 tail blade was improved through deriving an optimal painting condition. In detail, a condition of optimal sanding and a sort of primer and paint was showed. Finally, the reliability of tail blade was guaranteed through improving the quality of painting.

Design of Experiments for Optimization of Helicopter Flight Tests (헬리콥터 비행시험 최적화를 위한 실험계획법의 적용)

  • Byun, Jai-Hyun;Lee, Gun-Myung;Kim, Se-Hee
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.2
    • /
    • pp.113-124
    • /
    • 2014
  • In developing an aircraft, configuration determination and requirement proofing depend on flight test results. Since the flight tests require much time and high cost, systematic flight test planning and analysis are needed to reduce cost and development time. This paper presents a desirability function approach to present an integrative measure of vibration levels at important positions and suggests a fractional factorial design which is one of the experimental design methods to help perform systematic flight tests. A method to perform flight tests in stages is also suggested to further reduce the number of flight tests.