• Title/Summary/Keyword: 한국해양환경공학회

Search Result 533, Processing Time 0.029 seconds

Dynamic Behavior of Group Piles according to Pile Cap Embedded in Sandy Ground (사질토 지반에서 말뚝 캡의 근입에 따른 무리말뚝의 동적거동)

  • Kim, Seongho;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.35-41
    • /
    • 2018
  • Dynamic interaction of the ground-foundation-structure must be considered for safety of earthquake resistant design for piles supported structures. The p-y curve, which is proposed in the static load and cyclic load cases, is used for the earthquake resistant design of piles. The p-y curve does not consider dynamic interaction of the ground-foundation-structure on dynamic load cases such as earthquake. Therefore, it is difficult to apply the p-y curve to earthquake resistant design. The dynamic p-y curve by considering dynamic interaction of the ground-foundation-structure has been studied, and researches had same conditions that pile caps were on the ground surface and superstructures were added on pile caps for the simple weight. However, group piles are normally embedded into the ground except for marine structures, so it seems that the embedding the pile cap influences on the dynamic p-y curve of group piles. In this study, the shaking table model test was conducted to confirm dynamic behavior of group piles by the embedded pile cap in the ground. The result showed that dynamic behavior was different between two cases by embedding the pile cap or not.

Corrosion-Resisting Performance Evaluation of Concrete Mixed with Fly-Ash (플라이애시 혼합 콘크리트의 철근 부식 저항성능 평가)

  • Park, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.117-125
    • /
    • 2017
  • The role of fly ash in concrete become impotent with finding the characteristics of fly ash in which it is used as cement replacement material. In this paper, corrosion test results obtained by two test methods such as the long-term exposure corrosion test and the accelerated corrosion test method, were compared to investigated the corrosion resistance between fly ash concrete and normal concrete. Corrosion initiation time was measured in two types of concrete, i.e., one mixed with fly ash(FA) and the other without admixture(OPC). The accelerated corrosion test was carried out by four case, i.e., two samples is a cyclic drying-wetting method combined without carbonation(case 1) and combined with carbonation(case 2), and the other two samples is a artificial seawater ponding test method combined without carbonation(case 3) and combined with carbonation(case 4). Whether corrosion occurs, it was measures using half-cell potential method. The ponding test combined without carbonation was most effective in accelerating corrosion time of steel bars. The results indicated that the corrosion of rebar embedded in concrete occurred according to the order of OPC, FA. The delay relative ratio of corrosion obtained by corrosion initiation time between FA and OPC is 1.04 to 1.27. Consequently, fly ash concrete as the age increases its corrosion resistance was improved compared with OPC concrete.

A Study on Protection Depending on Mesh Size of Expanded Metal for Slope Reinforcement (사면보강용 Expanded Metal 격자크기에 따른 인발 특성 연구)

  • Ji, Younghwan;Kim, Kihwan;Kim, Sungho;Hwang, Yeongcheol;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.47-56
    • /
    • 2010
  • The construction of new roads and the consistent extension of already-existing roads or the line-shape revision of those roads are increased with the governmental investment to SOC facilities currently. Accordingly, the road cut slopes are in the trend of rapidly increasing. As the road slope has increased, a lot of human and property damages has entailed consequently and in the local case, numerous studies have carried out aiming at minimizing this damages caused by the rockfall and landslide. In general, standard falling rock prevention facility has employed for most of the local road slope based on "Guide for Installation and Management of Road Safety Facilities" published by MLTM(the Ministry of Land, Transport, and Maritime Affairs) but profound doubt has raised as to whether this rockfall prevention facility would function properly enough to prevent rockfall efficiently without any damages in case of actual occurrence of rockfall. In addition, it is a reality that in most cases, such work is relied on overseas technology as a whole as the local technical level is low and in case of rockfall prevention net, it is judged that a study on rockfall prevention net that is able to endure more powerful rockfall energy is required as the problem including net bursting is taken place as a result of enough bearing force being failed to be demonstrated due to its partial weak point(not uniformly made). Under this background, in this study, three kinds of model depending on mesh size of expanded metal that is considered to have an adoptability as rockfall prevention net, as target are selected and characteristics depending on mesh size of expanded metal is intended to be researched through a pull-out test performance by using pull-out test equipment rockfall prevention net.

Utilization of LFWD for Compaction Management of Embankment in Expressway Construction (고속도로 건설 시 성토부 다짐관리를 위한 LFWD의 활용성)

  • Park, Yangheum;Jang, Ilyoung;Do, Jongnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.45-51
    • /
    • 2021
  • The evaluation of the degree of compaction of the embankment area, which accounts for most of highway earthworks, is generally performed by a flat plate loading test. The plate loading test is a traditional test method and has high reliability in the field. However, as reaction force equipment must be carried out and it takes about 40 minutes per site during the test, there may be limitations in managing the entire expanse of earthworks. Meanwhile, in order to overcome this, the Ministry of Land, Infrastructure and Transport proposed a simple method of evaluating the level of compactness in the provisional guidelines for compaction management of the packaging infrastructure in 2010. However, it has not been utilized at the highway construction site until now, 10 years later. Therefore, this study attempted to verify the utility of the compaction evaluation method using LFWD (Light Falling Weight Deflectometer) of the impact loading method among the test methods suggested in the provisional guideline. To this end, the correlation was derived by conducting a plate loading test and an LFWD test for each site property and compaction degree. As a result of the test, there was no consistency of test data in the ground with a relative compaction of 80% or less. However, it was confirmed that the correlation has a tendency to increase beyond that. If the test method or test equipment is improved to ensure the consistency of the test values of the impact loading method in the future, it will play a big role in solving the blind spot for compaction management in the earthworks.

Petroleum Geochemistry of Organic Matter from the core samples in the Tertiary Pohang Basin (포항 분지 제3기층 시추코아 유기물의 석유 지화학적 특성)

  • Lee Youngjoo;Kwak Young Hoon;Yun Hye Su;Cheong Tae Jin;Oh Jae Ho;Kim Hagju;Kang Moohee
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.48-58
    • /
    • 1997
  • Core samples from the B, E, F, H wells in the Tertiary Pohang Basin were analysed for total organic carbon (TOC) content and subject to Rock-Eval pyrolysis in order to assess petroleum geochemical characteristics of organic matter. Following geochemical screening, we selected samples from each well for the study of bitumen and kerogens such as optical observation, infra-red spectroscopy and biomarker analyses. Sediments of the Tertiary Yonil Group contain total organic carbon ranging from $0.55{\%} to 3.74{\%}$ with S1+S2 values higher than 2mgHC/g Rock in B, E and F wells, which indicates fair hydrocarbon generation potential. Most organic matter in the B, E, F wells is compared to type II based on the Rock-Eval pyrolysis, infra-red spectroscopy and optical observation. However, organic matter in the H well is compared to type III because the well is located at the margin of the basin where the preservation of terrestrial material is dominant. Geochemical analyses show that organic matter in the Yonil Group is thermally immature although thermal maturity slightly increases with depth. Maturity levels of the extracted kerogens are similar to those of bulk samples ($Tmax<435^{\circ}C$. Petroleum geochemical charateristics of the sediments in the Tertairy Yonil Group is fair in terms of the organic richness and hydrocarbon genetic potential, but organic matter is thermally immature due to the shallow burial depth. Optical observation of the kerogens and biomarker analysis show that organic matter in the Yonil Group is both marine and terrestrial origin, although it was deposited in marine environment. Pristane/phytane ratio suggests rather anoxic depositional environment. Transitional characteristics of organic matter indicate that the marine Yonil Group was deposited near the terrestrial environments. Input of terrestrial organic matter is more prevalent in the samples recovered from the lowermost horizon in the wells due to the terrestrial environment at the time of basin formation.

  • PDF

Multi-Platform Warship M&S System Using the Hierarchical Multi-Agent System (계층구조적 다중에이전트를 이용한 다대다 함정전투 M&S 시스템)

  • Jung, Chan-Ho;You, Yong-Jun;Ryu, Han-Eul;Lee, Jang-Se;Kim, Jae-Ick;Chi, Sung-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.117-125
    • /
    • 2009
  • Recently the intelligent agent systems have been emerged as one of key issues for developing the defense M&S systems. However, most conventional agent architecture of M&S systems utilize the script-based models and can only deal with the individual behaviors so that they cannot suitably describe the precise tactical/strategic behavior and/or complex warfare environment. To overcome these problems, we have proposed the hierarchical multi-agent system architecture that is able to intelligently cope with the complex missions based on the functional role of each agent on the hierarchy such as an intelligence officer, captain, warship commander. Several simulation tests performed on 2:2 warship warfare models will illustrate our techniques.

Evaluation of Lead, Copper, Cadmium, and Mercury Species in the Leachate of Steel Making Slag by Seawater (해수에 의한 제강 슬래그의 납, 구리, 카드뮴 및 수은 화합물의 용출특성 평가)

  • Lee, Han-Kook;Lee, Dong-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.75-84
    • /
    • 2005
  • The aim of this study is to evaluate the leaching characteristics of lead, copper, cadmium, and mercury from steel making slag by seawater. To demonstrate the leaching characteristics of heavy metals from steel making slag by seawater, it was carried to various leaching tests such as regular leaching tests, liquid/sold(LS) leaching test and pH static test. From the leachability of $Pb^{+2},\;Cu^{+2},\;and\;Cd^{+2}$ from steel making slag in pH static test, it is distinguished between distilled water and seawater. With distilled water, it is very low between pH 7-8 and pH 11-12. On the other hands, with the seawater, its leaching is higher than that of distilled water. In particular, concentration of $Hg^{+2}$ leached from slag by seawater is lower than that of distilled water. Meanwhile, we found that the heavy metals from steel making slag would be dissolved and precipitated using geochemcial equilibrium program such as visual minteq. Lead and copper leached from steel making slag with seawater were dissolved nearly in the range of pH 11-12, but in the range of pH 7-10 those were precipitated about 90%. And cadmium leached from steel making slag with seawater were dissolved completely. On pH static test with distilled water, lead leached from steel making slag seemed to be similar to pH static test with seawater. However, copper and cadmium leached from steel making slag were dissolved. In general, the species of lead leached from steel making slag were formed mainly of $PbCl^+,\;PbSO_4$, the species of copper were formed mainly of $CuSO_4,\;CuCO_3$, the species of cadmium were formed mainly of $CdCl^+,\;CdSO_4$ due to being sorbed with the anions($Cl^-,\;CO_3^{-2},\;SO_4^{-2}$) of the seawater. Both pH static test with seawater and distilled water, it is not in the case of the mercury. Most of mercury leached from steel making slag was precipitated(SI=0). Because the decreasing of $Hg^{+2}$ concentrations depends ferociously on the variation of chloride($Cl^-$) existed in the seawater. $Hg^{+2}$ leached from steel making slag could be sorbed strongly with chloride($Cl^-$) compared of carbonate($CO_3^{-2}$) and sulfate($SO_4^{-2}$) in the seawater. On the basis of that result, we found that the species of mercury was formed of calomel($Hg_2Cl_2$) as one of finite solid. Due to forming a calomel($Hg_2Cl_2$) in the seawater, the stability of mercury species by steel making slag should be higher than those of lead, copper, and cadmium species. Regarding the results stated above, we postulated that the steel making slag could be recycled to sea aggregates due to being distinguishing leachability of heavy metals($Pb^{+2},\;Cu^{+2},\;Cd^{+2},\;and\;Hg^{+2}$) between leaching tests by distilled water and seawater.

Monitoring of non-point Pollutant Sources: Management Status and Load Change of Composting in a Rural Area based on UAV (UAV를 활용한 농촌지역 비점오염원 야적퇴비 관리상태 및 적재량 변화 모니터링)

  • PARK, Geon-Ung;PARK, Kyung-Hun;MOON, Byung-Hyun;SONG, Bong-Geun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • In rural areas, composting is a source of non-point pollutants. However, as the quantitative distribution and loading have not been estimated, it is difficult to determine the effect of composting on stream water quality. In this study, composting datum acquired by unmanned aerial vehicle(UAV) was verified by using terrestrial LiDAR, and the management status and load change of the composting was investigated by UAV with manual control flight, thereby obtaining the basic data to determine the effect on the water system. As a result of the comparative accuracy assessment based on terrestrial LiDAR, the difference in the digital surface model(DSM) was within 0.21m and the accuracy of the volume was 93.24%. We expect that the accuracy is sufficient to calculate and utilize the composting load acquired by UAV. Thus, the management status of composting can be investigated by UAV. As the total load change of composting were determined to be $1,172.16m^3$, $1,461.66m^3$, and $1,350.53m^3$, respectively, the load change of composting could be confirmed. We expect that the results of this study can contribute to efficient management of non-point source pollution by UAV.

Comparison of 1-g and Centrifuge Model Tests for Similitude Laws (상사법칙 검증을 위한 1-g 모형실험과 원심모형실험의 비교 연구)

  • Kim Sung-Ryul;Hwang Jae-Ik;Kim Myoung-Mo;Ko Hon-Yim
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.59-67
    • /
    • 2006
  • The centrifuge and 1-g shaking table tests were performed simultaneously to compare the dynamic behaviors of loose sands of the same geotechnical properties. The prototype soils were 10 m thick liquefiable loose sands. The geometric scaling factors were 20 for 1-g and 40 for centrifuge tests. The excess pore pressure, surface settlement, and acceleration in the soil were measured at the same locations in the 1-g and centrifuge tests. The total excess pore pressure from development to dissipation was measured. In the centrifuge test, viscous fluid was used as the pore water to eliminate the time scaling difference between dynamic time and dissipation time. In the 1-g tests, the steady state concept was applied to determine the unit weight of the model soil, and two different time scaling factors were applied for the dynamic time and the dissipation time. It is concluded that the 1-g tests can simulate the excess pore pressure of the prototype soil if the permeability of the model soil is small enough to prevent dissipation of excess pore pressure during shaking and the dissipation time scaling factor is properly determined.

A Study on Rational Design and Construction of High-Tension-Bolt Friction Joints (고장력볼트 마찰이음의 합리적 설계 및 시공에 관한 연구)

  • Lee, Seung Yong;Kyung, Kab Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.513-521
    • /
    • 2006
  • Many studies have been conducted on the high tension bolt friction connection in the view of the field practice. Those effort, however, unfortunately have not been appropriately applied in the design specifications. Recently, particularly for steel bridges, rationalization of design takes greater attention from designers and hence, demand on rationalization of high tension connection becomes more significant. The purpose of this study is to suggest direction for the rationalization of high tension bolt connection and to also provide fundamental information for the improvement of the design specifications. In order to accomplish the purposes, the design specifications in Korea was analyzed and compared with other specification from abroad, and was studied one of the most important factors including slip coefficient, and the specifications on the size of bolt holes. The effect of over-sized bolt hole and the reduction of axial force on bolt was evaluated through the experimental studies on the slippage of the high tension bolt connections. Other research topics included herein includes the difference of slip coefficients, the effect of over-sized bolt holes and the gap distance of members, and the application of filler plate and corrosion protected bolts. From the research results, it is known that the specifications in Korea apply a constant slip coefficient with respect to the contacted surface conditions while various coefficients are available depending on the contacted surface conditions. Therefore, it is recommended that the specifications in Korea also develop and detail the slip coefficient which can appropriately take account of the variation of the contacted surface conditions. It is also suggested that the limitation abroad on the over-sized bolt hole may be applied for enhancing the effectiveness of construction.