• Title/Summary/Keyword: 한국해양환경공학회

Search Result 533, Processing Time 0.028 seconds

Fast Consolidation Test Using Seepage Forces : Method and Validation (침투압을 이용한 급속압밀시험 : 방법 및 검증)

  • Lee, Kang-Il;Kim, Tae-Hyung;Znidarcic, Dobroslav
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.31-38
    • /
    • 2009
  • A continuous, fast, and convenient experimental method, replacing recent tests such as standard oedometer or self weight consolidation test, is needed for the determination of the consolidation behavior of unformed soft soils. This study introduced the seepage induced fast consolidation test using the flow pump technique. It can obtain the consolidation characteristics of unformed soft soils conveniently and fast. The seepage induced consolidation test apparatus consists of a modified triaxial cell, differential pressure transducer, flow pump, and displacement transducer. The test continuously proceeds with starting seepage forces induced consolidation, loading consolidation, and permeability test on the same sample. In addition, this test result was compared with the standard oedometer test result to make this method valid. From this study it was found that this method is a convenient and time saving effective method for obtaining data required for calculation of consolidation settlement of unformed soft soils.

Prediction of Tensile Strength of Wet Sand (II) : Validation (습윤 모래에서 인장강도의 예측 (II) : 검증)

  • Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.37-44
    • /
    • 2008
  • At low normal stress levels, tensile strength of sand characteristically varies with either saturation or suction of soil in an up-and-down manner with a peak tensile strength that can occur at any degree of saturation. A theory that accurately predicts tensile strength of wet sand was presented in the previous study. In this study, the results of uniaxial tensile, suction-saturation and direct shear tests obtained from three sands (Esperance sand from Seattle, Washington, clean sand from Perth, Australia, and Ottawa sand) are used to validate the proposed theory. The closed form expression of the proposed theory can predict well the experimental data obtained from these sands in terms of the variation patterns of tensile strength over the entire saturation regimes, the magnitude of the tensile strength, its peak value, and the corresponding degree of saturation when the peak strength occurs.

Ecotoxicity Assessment of Leachate from Disposal Site for Foot-and-Mouth Disease Carcasses (구제역 가축 매몰지 침출수 독성영향평가)

  • Kim, Dongwoo;Yu, Seungho;Chang, Soonwoong;Lee, Junga
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.5-11
    • /
    • 2014
  • In this study, chemical analysis and ecotoxicity tests of leachate from disposal site for foot-and-mouth disease carcasses (FMD leachate) were conducted to collect fundamental data that will be used to develop environmental risk assessment tools for FMD leachate. For chemical analysis, concentration of $Cl^-$, $NH{_4}{^+}-N$, Korea standard method indicators for detection of leachate released from animal carcasses burial site into groundwater and NRN (Ninhydrin-Reactive Nitrogens), a newly suggested screening test indicator to detect groundwater contamination by FMD leachate, were assessed. For ecotoxicity tests, luminescent bacteria (V. fischeri), micro-algae (P. subcapitata) and water flea (D. magna) were selected as test species. Correlation analysis between the concentration of $Cl^-$, $NH{_4}{^+}-N$, NRN and the toxicity to V. fischeri was performed to identify the better indicators to monitor FMD leachate contamination. From regression analysis, the concentration of the indicators in FMD leachate contaminated sample that induced halfmaximal toxic effect to V. fischeri was evaluated. Results obtained from this study can be applied to assess the risk by FMD leachate and to establish the guideline to manage risk in relation to FMD leachate.

Characteristics of Eco-friendly Porous Concrete for Seawater Purification Using By-Products of Steel Industry (철강산업 부산물을 활용한 해수정화용 친환경 다공질콘크리트의 특성)

  • Han, Woonwoo;Lee, Byungjae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • As of 2018, Steel slag was generated approximately 24.23 million tons. Howeve, except blast furnace slag, steel slag is a typical by-product which does not have a clearly defined purpose in recycling. Thus, countries around the world are putting great efforts into developing a purpose for the recycling of steel slag. The vast habitat foundation of marine life has been destroyed due to recent reckless marine development and environment pollution, resulting in intensification of the decline of marine resources, and a solution to this issue is imperative. In order to propose a method to recycle large amounts of by-product slag into a material that can serve as an alternative to natural aggregate, the engineering properties and applicability for each mixing factor of environment friendly porous concrete as a material for the composition of seawater purification were in this study. Regarding the nutrient elution properties, it was clear that the nutrients continuously flowed out up to an immersion time by 8 months in natural seawater; the nitrogenous fertilizer displayed excellent elution properties in this regard.

Conservation for the Seismic Models of Intake Tower with Nonlinear Behaviors and Fluid Structure Interaction (비선형거동과 구조물유체상호작용을 고려한 취수탑 내진모델의 보수성평가)

  • Lee, Gye-Hee;Lee, Myoung-Kyu;Hong, Kwan-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.17-24
    • /
    • 2020
  • In this study, series of nonlinear seismic analysis were performed on a reinforced concrete intake tower surrounded by water. To consider the fluid effect around the structure, analysis models were composed using an added mass and CEL approach. At this time, the implicit method was used for the added mass model, and the explicit method was used for the fluid structure interaction model. The input motions were scaled to correspond to 500, 1000, and 2400 years return period of the same artificial earthquake. To estimate the counteractivity of the fluid coupled model, models without fluid effect were constructed and used as a reference. The material models of concrete and reinforcement were selected to consider the nonlinear behavior after yielding, and analysis were performed by ABAQUS. As results, in the acceleration response spectrum of the structure, it was found that the influence of the surrounding fluid reducing the peak frequency and magnitude corresponding to the fundamental frequency of the structure. However, the added mass model did not affect the peak value corresponding to the higher mode. The sectional moments were increased significantly in the case of the added mass model than those of the reference model. Especially, this amplification occurred largely for a small-sized earthquake response in which linear behavior is dominant. In the fluid structure interaction model, the sectional moment with a low frequency component amplifies compared to that of the reference model, but the sectional moment with a high requency component was not amplified. Based in these results, it was evaluated that the counteractivity of the additive mass model was greater than that of the fluid structure interaction model.

A Study on the Characteristics of Bi-directional Responses by Ground Motions of Moderate Magnitude Earthquakes Recorded in Korea (우리나라에서 계측된 중규모 지진 지반운동의 수평 양방향 응답 특성 분석)

  • Kim, Jung Han;Kim, Jae Kwan;Heo, Tae Min;Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.269-277
    • /
    • 2019
  • In a seismic design, a structural demand by an earthquake load is determined by design response spectra. The ground motion is a three-dimensional movement; therefore, the design response spectra in each direction need to be assigned. However, in most design codes, an identical design response spectrum is used in two horizontal directions. Unlike these design criteria, a realistic seismic input motion should be applied for a seismic evaluation of structures. In this study, the definition of horizontal spectral acceleration representing the two-horizontal spectral acceleration is reviewed. Based on these methodologies, the horizontal responses of observed ground motions are calculated. The data used in the analysis are recorded accelerograms at the stations near the epicenters of recent earthquakes which are the 2007 Odeasan earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Geometric mean-based horizontal response spectra and maximum directional response spectrum are evaluated and their differences are compared over the period range. Statistical representation of the relations between geometric mean and maximum directional spectral acceleration for horizontal direction and spectral acceleration for vertical direction are also evaluated. Finally, discussions and suggestions to consider these different two horizontal directional spectral accelerations in the seismic performance evaluation are presented.

Influence of Backfill Condition on Force Components of Gravity Walls During Earthquakes (지진시 배면지반 조건이 중력식 안벽의 하중성분에 미치는 영향)

  • Kim Sung-Ryul;Hwang Jae-Ik;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • During earthquake, force components acting on quay walls consist of inertia force, earth pressure and water pressure. The earth pressure is largely influenced by the backfill condition such as soil density and the installation of gravel backfill. Therefore, shaking table tests were performed by using four different model sections, which were designed by varying the soil density and the backfill materials. The magnitude and the phase of force components acting on quay wall were analyzed. Test results showed that the gravel backfill and the soil compaction were effective to reduce the excess pore pressure in backfill and the magnitude and phase of backfill thrust were much influenced by the excess pore pressure in backfill. When the input acceleration was 0.10g, the average ratios of the inertia force, the front dynamic water force and the thrust to the total force were $64\%,\;21\%\;and\;16\%$, respectively. As the excess pore pressure increased, the ratio of the thrust to the total force increased.

The Movement Characteristics of Suspended Solid(SS) in Harbor Construction(II) - The Landfill Construction and The Grab Dredging Construction (항만공사시 부유토사의 거동 특성에 관한 연구(II) - 매립 및 준설공사시 -)

  • Lee Ji Wang;Maeng Jun Ho;Cho Kwang Woo;Yang Gwon Weol;Kim Young Seup
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.46-53
    • /
    • 2003
  • In order to analyze the movement characteristics of suspended solid(SS) in harbor construction, we investigate the generation and movement processes of the SS for the landfill construction by direct casting method and the grab dredging construction which is the most frequent process in harbor construction. We find that the SS is generated into a very high concentration right after the direct casting of landfill soil and continued up to 60 minutes in the landfill construction using the direct casting method with dredged materials by a ship of 700-tonnage. In the grab dredging construction, the SS is generated in a high density of concentration near at its source regardless of water depth, formed belt and diffused up to 700m along the trajectory of tidal current. Based on the result of the present study, it is recommended for the mitigation of SS generation that the silt protector be deployed near at construction site close enough to block the diffusion of SS and the body length of silt protector be long enough to mitigate the SS diffusion in the bottom layer.

  • PDF

Effects of Heavy Metal and Salinity on Electrical Conductivity in Fully Saturated Sand (포화된 사질토의 전기전도도에 중금속과 염분 농도가 미치는 영향)

  • Lee, Dongsoo;Hong, Young-Ho;Hong, Won-Teak;Chae, Kwang-Seok;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.10
    • /
    • pp.23-34
    • /
    • 2017
  • As the electrical property of fully saturated soils is dependent on the pore water, it has been commonly used for the detection of the contamination into the ground. The objective of this study is to investigate the electrical characteristics according to the salinity and the lead concentration in fully saturated soils. Fresh water and saline water with the salinity of 1%, 2% and 3%, which are mixed with 6 different lead solutions with the range of 0~10 mg/L, are prepared in the cylindrical cell incorporated with sensors for measuring electrical resistance and time domain reflectometry signal. Then, the dried sands are water-pluviated into the cell. The electrical resistance and the time domain reflectometry signal are used to estimate the electrical conductivity. Test results show that electrical conductivity determined from electrical resistance at the frequency of 1 kHz continuously increases with an increase in the lead concentration, thus it may be used for the estimation of the contaminant level. In addition, the electrical conductivity estimated by the time domain reflectometry changes even at very low concentration of lead, the variation rate decreases as the lead concentration increases. Thus, the time domain reflectometry can be used for the investigation of the heavy metal leakage. This study demonstrates that complementary characteristics of electrical resistance and time domain reflectometry may be used for the detection of the leakage and contamination of heavy metal in coastal and marine environments.

Engineering Characteristics of CLSM with Regard to the Particle Size of Bottom Ash (저회의 입도변화에 따른 CLSM의 공학적특성)

  • Lee, Yongsoo;Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.10
    • /
    • pp.5-10
    • /
    • 2020
  • As the demand for the recycling of industrial by-products increases due to various environmental restrictions including the prohibition of ocean disposal, various studies regarding the recycling of industrial by-products are currently being carried out. One of the industrial by-product, coal ash is produced from thermal power generation; studies on the recycling of fly ash have been actively carried out and it is currently recycled in various fields. In the case of bottom ash, however, only a portion of the total amount generated is primarily processed into a particle size of 2~4mm or less than 2mm to be used for gardening purpose and light weight aggregate and so on. The remaining amount is buried at ash disposal sites. Therefore, various studies are needed to develop measures to use bottom ash. This study aimed at identifying the optimal particle size and mixing ratio of bottom ash to be used as CLSM aggregate. To this end, it evaluated the usability of bottom ash as CLSM aggregate, by investigating the flowability and strength change characteristics of CLSM produced with regard to the mixing ratio of weathered granite soil and bottom ash, particle size of bottom ash to be mixed and soil binder addition rate and conducting a heavy metal leaching test.