• Title/Summary/Keyword: 한국이미지

Search Result 12,825, Processing Time 0.049 seconds

Development of Deep Learning Structure for Defective Pixel Detection of Next-Generation Smart LED Display Board using Imaging Device (영상장치를 이용한 차세대 스마트 LED 전광판의 불량픽셀 검출을 위한 딥러닝 구조 개발)

  • Sun-Gu Lee;Tae-Yoon Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.345-349
    • /
    • 2023
  • In this paper, we propose a study on the development of deep learning structure for defective pixel detection of next-generation smart LED display board using imaging device. In this research, a technique utilizing imaging devices and deep learning is introduced to automatically detect defects in outdoor LED billboards. Through this approach, the effective management of LED billboards and the resolution of various errors and issues are aimed. The research process consists of three stages. Firstly, the planarized image data of the billboard is processed through calibration to completely remove the background and undergo necessary preprocessing to generate a training dataset. Secondly, the generated dataset is employed to train an object recognition network. This network is composed of a Backbone and a Head. The Backbone employs CSP-Darknet to extract feature maps, while the Head utilizes extracted feature maps as the basis for object detection. Throughout this process, the network is adjusted to align the Confidence score and Intersection over Union (IoU) error, sustaining continuous learning. In the third stage, the created model is employed to automatically detect defective pixels on actual outdoor LED billboards. The proposed method, applied in this paper, yielded results from accredited measurement experiments that achieved 100% detection of defective pixels on real LED billboards. This confirms the improved efficiency in managing and maintaining LED billboards. Such research findings are anticipated to bring about a revolutionary advancement in the management of LED billboards.

A Study on the Use of Contrast Agent and the Improvement of Body Part Classification Performance through Deep Learning-Based CT Scan Reconstruction (딥러닝 기반 CT 스캔 재구성을 통한 조영제 사용 및 신체 부위 분류 성능 향상 연구)

  • Seongwon Na;Yousun Ko;Kyung Won Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.293-301
    • /
    • 2023
  • Unstandardized medical data collection and management are still being conducted manually, and studies are being conducted to classify CT data using deep learning to solve this problem. However, most studies are developing models based only on the axial plane, which is a basic CT slice. Because CT images depict only human structures unlike general images, reconstructing CT scans alone can provide richer physical features. This study seeks to find ways to achieve higher performance through various methods of converting CT scan to 2D as well as axial planes. The training used 1042 CT scans from five body parts and collected 179 test sets and 448 with external datasets for model evaluation. To develop a deep learning model, we used InceptionResNetV2 pre-trained with ImageNet as a backbone and re-trained the entire layer of the model. As a result of the experiment, the reconstruction data model achieved 99.33% in body part classification, 1.12% higher than the axial model, and the axial model was higher only in brain and neck in contrast classification. In conclusion, it was possible to achieve more accurate performance when learning with data that shows better anatomical features than when trained with axial slice alone.

Threat Situation Determination System Through AWS-Based Behavior and Object Recognition (AWS 기반 행위와 객체 인식을 통한 위협 상황 판단 시스템)

  • Ye-Young Kim;Su-Hyun Jeong;So-Hyun Park;Young-Ho Park
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.189-198
    • /
    • 2023
  • As crimes frequently occur on the street, the spread of CCTV is increasing. However, due to the shortcomings of passively operated CCTV, the need for intelligent CCTV is attracting attention. Due to the heavy system of such intelligent CCTV, high-performance devices are required, which has a problem in that it is expensive to replace the general CCTV. To solve this problem, an intelligent CCTV system that recognizes low-quality images and operates even on devices with low performance is required. Therefore, this paper proposes a Saying CCTV system that can detect threats in real time by using the AWS cloud platform to lighten the system and convert images into text. Based on the data extracted using YOLO v4 and OpenPose, it is implemented to determine the risk object, threat behavior, and threat situation, and calculate the risk using machine learning. Through this, the system can be operated anytime and anywhere as long as the network is connected, and the system can be used even with devices with minimal performance for video shooting and image upload. Furthermore, it is possible to quickly prevent crime by automating meaningful statistics on crime by analyzing the video and using the data stored as text.

Deep Learning Based Digital Staining Method in Fourier Ptychographic Microscopy Image (Fourier Ptychographic Microscopy 영상에서의 딥러닝 기반 디지털 염색 방법 연구)

  • Seok-Min Hwang;Dong-Bum Kim;Yu-Jeong Kim;Yeo-Rin Kim;Jong-Ha Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.97-106
    • /
    • 2022
  • In this study, H&E staining is necessary to distinguish cells. However, dyeing directly requires a lot of money and time. The purpose is to convert the phase image of unstained cells to the amplitude image of stained cells. Image data taken with FPM was created with Phase image and Amplitude image using Matlab's parameters. Through normalization, a visually identifiable image was obtained. Through normalization, a visually distinguishable image was obtained. Using the GAN algorithm, a Fake Amplitude image similar to the Real Amplitude image was created based on the Phase image, and cells were distinguished by objectification using MASK R-CNN with the Fake Amplitude image As a result of the study, D loss max is 3.3e-1, min is 6.8e-2, G loss max is 6.9e-2, min is 2.9e-2, A loss max is 5.8e-1, min is 1.2e-1, Mask R-CNN max is 1.9e0, and min is 3.2e-1.

Suitable clothing recommendation system by size and skin color (의류 사이즈별 및 피부톤에 기반을 둔 의류 추천 시스템)

  • Park, Chang-Young;Lim, Byeong-Chan;Lee, Won-Joon;Lee, Chang-Su;Kim, Min-Su;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.407-413
    • /
    • 2022
  • Existing clothing recommendation systems remain at the level of showing appropriate photos when a user selects a type of clothing he or she likes after entering his or her own body size or body size. When a user purchases clothing using such recommendation systems, there are many cases in which it does not fit or does not fit the user's body size. In this study, to solve these problems of existing clothing recommendation systems, a system was implemented in which the user receives not only size but also skin tone and recommends clothing suitable for the user's body size as well as skin tone. In this system, clothing size information obtained through web crawling was periodically stored in a database for eight male tops to recommend clothing, and the entire pixel of the clothing image was analyzed to extract color text values. In order to confirm the performance of this system, a survey was conducted on 100 male college students, and the satisfaction level was 70%. Most of the reasons for not being satisfied are that the recommended clothing is limited, so it is judged that it is necessary to expand the target clothing in the future.

A Study on the Smart(智慧) Museum in China: on the case of Dunhuang Museum, The Palace Museum, China Arts and Crafts Master Museum (중국 스마트(智慧) 박물관에 관한 연구: 둔황 박물관, 고궁 박물관, 중국공예미술대사 박물관 사례를 중심으로)

  • BO KYONG KIM
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.69-74
    • /
    • 2023
  • Smart museums based on the growth of online exhibition can be seen as in line with the movement of the 4th Industrial Revolution. By combining art and technologies, they enable viewers to experience culture and art. This study examined the cases of the Dunhuang Museum, the Palace Museum, and the China Arts and Crafts Master Museum to assess or identify how China is leading by accepting the technology of the fourth industry and applying the technology. In common, Chinese smart museums are widely used for collecting enviromental data, establishing integrated digital applications, and preserving collections, services, management, and exhibitions through VR, and AR. Through the case of the Chinese Smart Museum, this study identified the online exhibition as a space that exists in another dimension rather than an image replica with excellent operational utility. Therefore, online exhibitions are the best medium to expand the space, and viewers can explorethe museum's exhibition room and engage with all the contents of the museum without visiting the museum in person. Through the online exhibition of smart museums, visitors and viewers can be transformed into more active cultural consumers and develop collective capabilities.

The Urban Regeneration Project of Abu Dhabi and the Building of Guggenheim: Issues and Tasks (아부다비의 도시재생 프로젝트와 구겐하임 분관 건립 계획: 쟁점과 과제)

  • Park, Sojung;Kwon, Cheeyun
    • Korean Association of Arts Management
    • /
    • no.49
    • /
    • pp.117-147
    • /
    • 2019
  • Many cities are utilizing their cultural capital as a means for urban regeneration and tourist attraction. Museums form an essential component in these culture-based urban regeneration efforts, the Guggenheim Bilbao being a frequently cited example of success. The United Arab Emirates (UAE) has benchmarked the Bilbao case study as they were looking for alternative income-generating industries in the post-oil era, embarking on a city-building project on the Saadiyat Island where resorts and cultural institutions of massive scale are being constructed. The Louvre Abu Dhabi and the Guggenheim Abu Dhabi were pursued under this scheme, aiming at attracting tourism and elevating their status in the region as a cultural capital. This study examines the political, economic, and cultural background behind the Saadiyat city project and the pending issues behind the construction of the Guggenheim Abu Dhabi. This study purports that besides funding and an ambitious plan, social and cultural developments in the region over time will be essential for a successful localization of a Western brand museum in the region.

The Prediction of Cryptocurrency Prices Using eXplainable Artificial Intelligence based on Deep Learning (설명 가능한 인공지능과 CNN을 활용한 암호화폐 가격 등락 예측모형)

  • Taeho Hong;Jonggwan Won;Eunmi Kim;Minsu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.129-148
    • /
    • 2023
  • Bitcoin is a blockchain technology-based digital currency that has been recognized as a representative cryptocurrency and a financial investment asset. Due to its highly volatile nature, Bitcoin has gained a lot of attention from investors and the public. Based on this popularity, numerous studies have been conducted on price and trend prediction using machine learning and deep learning. This study employed LSTM (Long Short Term Memory) and CNN (Convolutional Neural Networks), which have shown potential for predictive performance in the finance domain, to enhance the classification accuracy in Bitcoin price trend prediction. XAI(eXplainable Artificial Intelligence) techniques were applied to the predictive model to enhance its explainability and interpretability by providing a comprehensive explanation of the model. In the empirical experiment, CNN was applied to technical indicators and Google trend data to build a Bitcoin price trend prediction model, and the CNN model using both technical indicators and Google trend data clearly outperformed the other models using neural networks, SVM, and LSTM. Then SHAP(Shapley Additive exPlanations) was applied to the predictive model to obtain explanations about the output values. Important prediction drivers in input variables were extracted through global interpretation, and the interpretation of the predictive model's decision process for each instance was suggested through local interpretation. The results show that our proposed research framework demonstrates both improved classification accuracy and explainability by using CNN, Google trend data, and SHAP.

Performance Evaluation of Loss Functions and Composition Methods of Log-scale Train Data for Supervised Learning of Neural Network (신경 망의 지도 학습을 위한 로그 간격의 학습 자료 구성 방식과 손실 함수의 성능 평가)

  • Donggyu Song;Seheon Ko;Hyomin Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.388-393
    • /
    • 2023
  • The analysis of engineering data using neural network based on supervised learning has been utilized in various engineering fields such as optimization of chemical engineering process, concentration prediction of particulate matter pollution, prediction of thermodynamic phase equilibria, and prediction of physical properties for transport phenomena system. The supervised learning requires training data, and the performance of the supervised learning is affected by the composition and the configurations of the given training data. Among the frequently observed engineering data, the data is given in log-scale such as length of DNA, concentration of analytes, etc. In this study, for widely distributed log-scaled training data of virtual 100×100 images, available loss functions were quantitatively evaluated in terms of (i) confusion matrix, (ii) maximum relative error and (iii) mean relative error. As a result, the loss functions of mean-absolute-percentage-error and mean-squared-logarithmic-error were the optimal functions for the log-scaled training data. Furthermore, we figured out that uniformly selected training data lead to the best prediction performance. The optimal loss functions and method for how to compose training data studied in this work would be applied to engineering problems such as evaluating DNA length, analyzing biomolecules, predicting concentration of colloidal suspension.

Adaptation to Baby Schema Features and the Perception of Facial Age (인물 얼굴의 나이 판단과 아기도식 속성에 대한 순응의 잔여효과)

  • Yejin Lee;Sung-Ho Kim
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.157-172
    • /
    • 2022
  • Using the adaptation aftereffect paradigm, this study investigated whether adaptation to baby schema features of the face and body could affect facial age perceptions. In Experiment 1, participants were asked to determine whether the test faces that morphed at a certain ratio of a baby face and an adult face were perceived as 'baby' or 'adult' after being adapted to either a baby or an adult face. The result of Experiment 1 showed that after being adapted to baby faces, test faces were assessed as belonging to an adult more often than when being adapted to adult faces. In the subsequent experiments, participants carried out the same facial age judgment task after being adapted to baby or adult body silhouettes (Experiment 2) or hand images (Experiment 3). The results revealed that age perceptions were biased in the direction of the adaptors (i.e., an assimilative aftereffect) after adaptation to body silhouettes (Experiment 2) but did not change after being adapted to hands (Experiment 3). The present study showed that contrastive aftereffects in the perception of facial age were induced by adaptation to the baby face but failed to determine the cross-category transfer of age adaptation from hands or body silhouettes to faces.