Annual Conference on Human and Language Technology
/
2000.10d
/
pp.48-55
/
2000
본 논문은 국소문맥을 사용하여 만들어진 Decision List를 통해 단어의 형태적 중의성을 제거하는 방법을 기술한다. 최초 종자 연어(Seed Collocation)로 1차 Decision List를 만들어 실험 말뭉치에 적용하고 태깅된 결과를 자가 학습하는 반복과정에 의해 Decision List의 수행능력을 향상시킨다. 이 방법은 단어의 형태적 중의성 제거에 일정 거리의 연어가 가장 큰 영향을 끼친다는 직관에 바탕을 두며 사람의 추가적인 교정을 필요로 하지 않는 비교사 방식(대량의 원시 말뭉치에 기반한)에 의해 수행한다. 학습을 통해 얻어진 Decision List는 연세대 형태소 분석기인 MORANY의 형태소 분석 결과에 적용되어 태깅시 성능을 향상시킨다. 실험 말뭉치에 있는 중의성을 가진 12개의 단어들에 본 알고리즘을 적용하여 긍정적인 결과(90.61%)를 얻었다. 은닉 마르코프 모델의 바이그램(bigram) 모델과 비교하기 위하여 '들었다' 동사만을 가지고 실험하였는데 바이그램 모델의 태깅결과(72.61%)보다 뛰어난 결과 (94.25%)를 얻어서 본 모델이 형태적 중의성 해소에 유용함을 확인하였다.
Annual Conference on Human and Language Technology
/
2014.10a
/
pp.112-116
/
2014
서답형 문항은 학생들의 종합적인 사고능력을 판단하는데 매우 유용하지만 채점할 때, 시간과 비용이 매우 많이 소요되고 채점자의 공정성을 확보해야 하는 어려움이 있다. 이러한 문제를 개선하기 위해 본 논문에서는 서답형 문항에 대한 자동채점 시스템을 제안한다. 본 논문에서 제안하는 시스템은 크게 언어 처리 단계와 채점 단계로 나뉜다. 첫 번째로 언어 처리 단계에서는 형태소 분석과 같은 한국어 정보처리 시스템을 이용하여 학생들의 답안을 분석한다. 두 번째로 채점 단계를 진행하는데 이 단계는 아래와 같은 순서로 진행된다. 1) 첫 번째 단계에서 분석 결과가 완전히 일치하는 답안들을 하나의 유형으로 간주하여 각 유형에 속한 답안의 빈도수가 높은 순서대로 정렬하여 인간 채점자가 고빈도 학생 답안을 수동으로 채점한다. 2) 현재까지 채점된 결과와 모범답안을 학습말뭉치로 간주하여 자질 추출 및 자질 가중치 학습을 수행한다. 3) 2)의 학습 결과를 토대로 미채점 답안들을 군집화하여 분류한다. 4) 분류된 결과 중에서 신뢰성이 높은 채점 답안에 대해서 인간 채점자가 확인하고 학습말뭉치에 추가한다. 5) 이와 같은 방법으로 미채점 답안이 존재하지 않을 때까지 반복한다. 제안된 시스템을 평가하기 위해서 2013년 학업성취도 평가의 사회(중3) 및 국어(고2) 과목의 서답형 문항을 사용하였다. 각 과목에서 1000개의 학생 답안을 추출하여 채점시간과 정확률을 평가하였다. 채점시간을 전체적으로 약 80% 이상 줄일 수 있었고 채점 정확률은 사회 및 국어 과목에 대해 각각 98.7%와 97.2%로 나타났다. 앞으로 자동 채점 시스템의 성능을 개선하고 인간 채점자의 집중도를 높일 수 있도록 인터페이스를 개선한다면 국가수준의 대단위 평가에 충분히 활용할 수 있을 것으로 생각한다.
Park, Young-Keun;Choi, Jae-Sung;Kim, Jae-Min;Lee, Seong-Dong;Lee, Hyun-Ah
Annual Conference on Human and Language Technology
/
2016.10a
/
pp.273-275
/
2016
외국인 유학생과 국내 체류 외국인을 포함하여 한국어를 학습하고자 하는 외국인이 지속적으로 증가함에 따라, 외국인 한국어 학습자의 교육에 대한 관심도 높아지고 있다. 기존 맞춤법 검사기는 한국어를 충분히 이해할 수 있는 한국인의 사용에 중점을 두고 있어, 외국인 한국어 학습자가 사용하기에는 다소 부적절하다. 본 논문에서는 한국어의 문맥 특성과 외국인의 작문 특성을 반영한 한국어 교정 방식을 제안한다. 제안하는 시스템에서는 말뭉치에서 추출한 어절 바이그램에 대한 음절 역색인을 구성하여 추천 표현을 빠르게 제시할 수 있으며, 키보드 후킹에 기반한 사용자인터페이스를 제공하여 사용자 편의를 높인다.
The Journal of the Convergence on Culture Technology
/
v.10
no.3
/
pp.565-577
/
2024
This discussion looked at how emotional adjectives are connected in the format [[emotional adjective + '-ko(and)'] + emotional adjective]. As a result, it was confirmed that there are quite a few cases in which two or more emotional adjectives are used to express emotions in Korean. This can help Korean learners understand and express the individual lexical meanings of emotional adjectives more clearly by identifying emotional adjectives that are used together with the corresponding configuration. It was believed that it could help Korean language learners express complex emotions or create rich emotional expressions when expressing their emotions in Korean. It is hoped that the examples and frequency of [[emotional adjective+'-ko(and)'+emotional adjective] shown in this discussion will be of some help in teaching and learning Korean emotional vocabulary.
Seo, Hongsuck;Lee, Sungjin;Lee, Jinsik;Lee, Jonghoon;Lee, Gary Geunbae
Annual Conference on Human and Language Technology
/
2011.10a
/
pp.136-139
/
2011
외국어 교육의 필요성이 강조되고 그에 대한 요구가 늘어남에 따라 언어 교육의 기회를 늘리고 비용을 줄이기 위해 컴퓨터 기반의 다양한 기술들의 요구 역시 증가하고 개발되고 있다. 언어 능력 개발의 중요한 요소로서 문법 교육에 대한 컴퓨터 지원 기술 연구가 활발히 진행되고 있다. 본 연구에서는 문법 오류 시뮬레이션을 통해 문법 오류 패턴 데이터베이스를 구축하고 이들 패턴과 사용자 입력의 패턴 매칭으로 생성된 자질 벡터로 기계 학습을 하여 문법성 확인을 했다. 문법성 확인 결과에 따라 오류 종류에 따른 상대 빈도를 고려하여 오류 종류를 분류했다. 또 말하기와 쓰기 작업의 서로 다른 특성을 반영하기 위해 말하기 작업과 쓰기 작업에 대한 두 개의 다른 말뭉치가 학습에 이용 되었다.
The purpose of this paper is to investigate the phonemic errors in Korean learner's spoken corpus. Through this, we tried to investigate the common errors and the errors in certain languages. The results of the analysis were as follows. First, Errors that distinguish three phonemes(plain sound, tense sound, aspiration sound) were high in all languages. In the middle phonemes, the most common errors in pronouncing 'ㅓ' in all languages. Second, the errors of each language are different. Comparing the ratios by position, Chinese characters had the most common errors with 50% in final phoneme, and the Japanese language showed equal errors in initial, middle, and end. In English, initial phoneme errors accounted for 58%. Vietnamese Learners showed intensive errors in the initial and final phoneme. Third, in addition to the phoneme errors, we also examined the allophone errors and foreign language pronunciation errors. The allophone errors are mainly concentrated in 'ㄹ', and the pronunciation of the foreign language is mainly used in the source language or the native language of the learners. This paper analyzes the phoneme errors in the Learner's spoken language through the spoken corpus data with representative and annotation consistency. Through this study, we could compare the difference of phoneme errors of Main Korean learners.
Journal of the Korean Society of Industry Convergence
/
v.26
no.3
/
pp.433-442
/
2023
The purpose of this study is to reveal the Korean learners' usage pattern of '의', the genitive particle, according to semantic classification, so that it can be referred to in determining the contents and methods of related education. The method of this study adopts a quantitative analysis using learners corpus established by National Institute of Korean Language. As a result of the analysis, as proficiency increases, the overall frequency of '의' increases and the number of meaning senses used increases. However, the frequency of errors also increases with it. As for the usage pattern of each sense, the meaning of 'ownership, belonging' is the most frequent, and followed by 'acting entity', 'kinship, social relations', and 'relationship(area)'. In conclusion, the meanings of 'acting subjects' and 'relationships(area) need to be supplemented with explicit education. Other meanings need to be discussed, and decisions should be made in consideration of learning purpose and proficiency.
This study investigates how common English hedge expressions such as 'I think' and 'I guess' appear in Korean, with the aim of providing explicit explanation for English-speaking leaners of Korean. Based on a contrastive analysis of spoken English and Korean corpus, this study argues three points: Firstly, 'I guess' appears with a wider variety of modalities in Korean than 'I think'. Secondly, this study has found that Korean textbooks contain inappropriate use of registers regarding the English translations of '-geot -gat-': although these markers are used in spoken Korean, they were translated into written English. Therefore, this study suggests that '-geot -gat-' be translated into 'I think' in spoken English, and into 'it seems' in the case of written English and narratives. Lastly, the contrastive analysis has shown that when 'I think' is used with deontic modalities such as 'I think I have to', Korean use '-a-ya-get-': the use of hedge marker 'I think' with 'I have to', which shows obligation or speaker's volition turns the deontic modalities into expressions of speaker's opinion.
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.8
/
pp.66-74
/
2014
Recently a variety of study of Korean parsing system is carried out by many software engineers and linguists. The parsing system mainly uses the method of machine learning or symbol processing paradigm. But the parsing system using machine learning has long training time because the data of Korean sentence is very big. And the system shows the limited recognition rate because the data has self error. In this thesis we design system using feature module which can reduce training time and analyze the recognized rate each the number of training sentences and repetition times. The designed system uses the separated modules and sorted table for binary search. We use the refined 36,090 sentences which is extracted by Sejong Corpus. The training time is decreased about three hours and the comparison of recognized rate is the highest as 84.54% when 10,000 sentences is trained 50 times. When all training sentence(32,481) is trained 10 times, the recognition rate is 82.99%. As a result it is more efficient that the system is used the refined data and is repeated the training until it became the steady state.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.659-663
/
2023
이 논문은 한국어 음성인식 성능을 개선하고자 기존 음성인식 과정을 자모단위 음성인식 모델과 신경망 기반 자모 병합 모델 총 두 단계로 구성하였다. 한국어는 조합어 특성상 음성 인식에 필요한 음절 단위가 약 2900자에 이른다. 이는 학습 데이터셋에 자주 등장하지 않는 음절에 대해서 음성인식 성능을 저하시키고, 학습 비용을 높이는 단점이 있다. 이를 개선하고자 음절 단위의 인식이 아닌 51가지 자모 단위(ㄱ-ㅎ, ㅏ-ㅞ)의 음성인식을 수행한 후 자모 단위 인식 결과를 음절단위의 한글로 병합하는 과정을 수행할 수 있다[1]. 자모단위 인식결과는 초성, 중성, 종성을 고려하면 규칙 기반의 병합이 가능하다. 하지만 음성인식 결과에 잘못인식된 자모가 포함되어 있다면 최종 병합 결과에 오류를 생성하고 만다. 이를 해결하고자 신경망 기반의 자모 병합 모델을 제시한다. 자모 병합 모델은 분리되어 있는 자모단위의 입력을 완성된 한글 문장으로 변환하는 작업을 수행하고, 이 과정에서 음성인식 결과로 잘못인식된 자모에 대해서도 올바른 한글 문장으로 변환하는 오류 수정이 가능하다. 본 연구는 한국어 음성인식 말뭉치 KsponSpeech를 활용하여 실험을 진행하였고, 음성인식 모델로 Wav2Vec2.0 모델을 활용하였다. 기존 규칙 기반의 자모 병합 방법에 비해 제시하는 자모 병합 모델이 상대적 음절단위오류율(Character Error Rate, CER) 17.2% 와 단어단위오류율(Word Error Rate, WER) 13.1% 향상을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.