• Title/Summary/Keyword: 한국어 학습자 말뭉치

Search Result 28, Processing Time 0.023 seconds

Morphological disambiguation using Local Context (국소 문맥을 이용한 형태적 중의성 해소)

  • Lee, Chung-Hee;Yoon, Jun-Tae;Song, Man-Suk
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.48-55
    • /
    • 2000
  • 본 논문은 국소문맥을 사용하여 만들어진 Decision List를 통해 단어의 형태적 중의성을 제거하는 방법을 기술한다. 최초 종자 연어(Seed Collocation)로 1차 Decision List를 만들어 실험 말뭉치에 적용하고 태깅된 결과를 자가 학습하는 반복과정에 의해 Decision List의 수행능력을 향상시킨다. 이 방법은 단어의 형태적 중의성 제거에 일정 거리의 연어가 가장 큰 영향을 끼친다는 직관에 바탕을 두며 사람의 추가적인 교정을 필요로 하지 않는 비교사 방식(대량의 원시 말뭉치에 기반한)에 의해 수행한다. 학습을 통해 얻어진 Decision List는 연세대 형태소 분석기인 MORANY의 형태소 분석 결과에 적용되어 태깅시 성능을 향상시킨다. 실험 말뭉치에 있는 중의성을 가진 12개의 단어들에 본 알고리즘을 적용하여 긍정적인 결과(90.61%)를 얻었다. 은닉 마르코프 모델의 바이그램(bigram) 모델과 비교하기 위하여 '들었다' 동사만을 가지고 실험하였는데 바이그램 모델의 태깅결과(72.61%)보다 뛰어난 결과 (94.25%)를 얻어서 본 모델이 형태적 중의성 해소에 유용함을 확인하였다.

  • PDF

Korean Automated Scoring System for Supply-Type Items using Semi-Supervised Learning (준지도학습 방법을 이용한 한국어 서답형 문항 자동채점 시스템)

  • Cheon, Min-Ah;Seo, Hyeong-Won;Kim, Jae-Hoon;Noh, Eun-Hee;Sung, Kyung-Hee;Lim, EunYoung
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.112-116
    • /
    • 2014
  • 서답형 문항은 학생들의 종합적인 사고능력을 판단하는데 매우 유용하지만 채점할 때, 시간과 비용이 매우 많이 소요되고 채점자의 공정성을 확보해야 하는 어려움이 있다. 이러한 문제를 개선하기 위해 본 논문에서는 서답형 문항에 대한 자동채점 시스템을 제안한다. 본 논문에서 제안하는 시스템은 크게 언어 처리 단계와 채점 단계로 나뉜다. 첫 번째로 언어 처리 단계에서는 형태소 분석과 같은 한국어 정보처리 시스템을 이용하여 학생들의 답안을 분석한다. 두 번째로 채점 단계를 진행하는데 이 단계는 아래와 같은 순서로 진행된다. 1) 첫 번째 단계에서 분석 결과가 완전히 일치하는 답안들을 하나의 유형으로 간주하여 각 유형에 속한 답안의 빈도수가 높은 순서대로 정렬하여 인간 채점자가 고빈도 학생 답안을 수동으로 채점한다. 2) 현재까지 채점된 결과와 모범답안을 학습말뭉치로 간주하여 자질 추출 및 자질 가중치 학습을 수행한다. 3) 2)의 학습 결과를 토대로 미채점 답안들을 군집화하여 분류한다. 4) 분류된 결과 중에서 신뢰성이 높은 채점 답안에 대해서 인간 채점자가 확인하고 학습말뭉치에 추가한다. 5) 이와 같은 방법으로 미채점 답안이 존재하지 않을 때까지 반복한다. 제안된 시스템을 평가하기 위해서 2013년 학업성취도 평가의 사회(중3) 및 국어(고2) 과목의 서답형 문항을 사용하였다. 각 과목에서 1000개의 학생 답안을 추출하여 채점시간과 정확률을 평가하였다. 채점시간을 전체적으로 약 80% 이상 줄일 수 있었고 채점 정확률은 사회 및 국어 과목에 대해 각각 98.7%와 97.2%로 나타났다. 앞으로 자동 채점 시스템의 성능을 개선하고 인간 채점자의 집중도를 높일 수 있도록 인터페이스를 개선한다면 국가수준의 대단위 평가에 충분히 활용할 수 있을 것으로 생각한다.

  • PDF

Context Based Real-time Korean Writing Correcting for Foriengers (외국인 학습자를 위한 문맥 기반 실시간 국어 문장 교정)

  • Park, Young-Keun;Choi, Jae-Sung;Kim, Jae-Min;Lee, Seong-Dong;Lee, Hyun-Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.273-275
    • /
    • 2016
  • 외국인 유학생과 국내 체류 외국인을 포함하여 한국어를 학습하고자 하는 외국인이 지속적으로 증가함에 따라, 외국인 한국어 학습자의 교육에 대한 관심도 높아지고 있다. 기존 맞춤법 검사기는 한국어를 충분히 이해할 수 있는 한국인의 사용에 중점을 두고 있어, 외국인 한국어 학습자가 사용하기에는 다소 부적절하다. 본 논문에서는 한국어의 문맥 특성과 외국인의 작문 특성을 반영한 한국어 교정 방식을 제안한다. 제안하는 시스템에서는 말뭉치에서 추출한 어절 바이그램에 대한 음절 역색인을 구성하여 추천 표현을 빠르게 제시할 수 있으며, 키보드 후킹에 기반한 사용자인터페이스를 제공하여 사용자 편의를 높인다.

  • PDF

Synonym Emotional Adjectives in Coordination: Analyzing [Emotional Adjective + '-ko(and)'] + Emotional Adjective] Structures in Korean (감정형용사 유의어 결합 연구 -[[감정형용사 + '-고'] + 감정형용사] 구성-)

  • Park, JINA;Jeong, Yong-Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.565-577
    • /
    • 2024
  • This discussion looked at how emotional adjectives are connected in the format [[emotional adjective + '-ko(and)'] + emotional adjective]. As a result, it was confirmed that there are quite a few cases in which two or more emotional adjectives are used to express emotions in Korean. This can help Korean learners understand and express the individual lexical meanings of emotional adjectives more clearly by identifying emotional adjectives that are used together with the corresponding configuration. It was believed that it could help Korean language learners express complex emotions or create rich emotional expressions when expressing their emotions in Korean. It is hoped that the examples and frequency of [[emotional adjective+'-ko(and)'+emotional adjective] shown in this discussion will be of some help in teaching and learning Korean emotional vocabulary.

Grammar Error Detection System for Learners of Spoken and Written English (영어 말하기, 쓰기 학습자를 위한 문법 오류 검출 시스템)

  • Seo, Hongsuck;Lee, Sungjin;Lee, Jinsik;Lee, Jonghoon;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.136-139
    • /
    • 2011
  • 외국어 교육의 필요성이 강조되고 그에 대한 요구가 늘어남에 따라 언어 교육의 기회를 늘리고 비용을 줄이기 위해 컴퓨터 기반의 다양한 기술들의 요구 역시 증가하고 개발되고 있다. 언어 능력 개발의 중요한 요소로서 문법 교육에 대한 컴퓨터 지원 기술 연구가 활발히 진행되고 있다. 본 연구에서는 문법 오류 시뮬레이션을 통해 문법 오류 패턴 데이터베이스를 구축하고 이들 패턴과 사용자 입력의 패턴 매칭으로 생성된 자질 벡터로 기계 학습을 하여 문법성 확인을 했다. 문법성 확인 결과에 따라 오류 종류에 따른 상대 빈도를 고려하여 오류 종류를 분류했다. 또 말하기와 쓰기 작업의 서로 다른 특성을 반영하기 위해 말하기 작업과 쓰기 작업에 대한 두 개의 다른 말뭉치가 학습에 이용 되었다.

  • PDF

Analysis of Phonemic Errors of Korean Learners According to Language and Proficiency (언어권과 숙달도에 따른 한국어 학습자의 발음 오류 분석 - 음소 오류를 중심으로 -)

  • 유소영;강현화
    • Language Facts and Perspectives
    • /
    • v.44
    • /
    • pp.357-397
    • /
    • 2018
  • The purpose of this paper is to investigate the phonemic errors in Korean learner's spoken corpus. Through this, we tried to investigate the common errors and the errors in certain languages. The results of the analysis were as follows. First, Errors that distinguish three phonemes(plain sound, tense sound, aspiration sound) were high in all languages. In the middle phonemes, the most common errors in pronouncing 'ㅓ' in all languages. Second, the errors of each language are different. Comparing the ratios by position, Chinese characters had the most common errors with 50% in final phoneme, and the Japanese language showed equal errors in initial, middle, and end. In English, initial phoneme errors accounted for 58%. Vietnamese Learners showed intensive errors in the initial and final phoneme. Third, in addition to the phoneme errors, we also examined the allophone errors and foreign language pronunciation errors. The allophone errors are mainly concentrated in 'ㄹ', ​​and the pronunciation of the foreign language is mainly used in the source language or the native language of the learners. This paper analyzes the phoneme errors in the Learner's spoken language through the spoken corpus data with representative and annotation consistency. Through this study, we could compare the difference of phoneme errors of Main Korean learners.

A Study on the Use of Genitive Particle '의': Focusing on the analysis of Korean Learners Corpus (한국어 학습자의 관형격 조사 '의' 사용 양상 연구: 학습자 말뭉치 분석을 중심으로)

  • Ji-Young Sim;Soo-Hyun Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.433-442
    • /
    • 2023
  • The purpose of this study is to reveal the Korean learners' usage pattern of '의', the genitive particle, according to semantic classification, so that it can be referred to in determining the contents and methods of related education. The method of this study adopts a quantitative analysis using learners corpus established by National Institute of Korean Language. As a result of the analysis, as proficiency increases, the overall frequency of '의' increases and the number of meaning senses used increases. However, the frequency of errors also increases with it. As for the usage pattern of each sense, the meaning of 'ownership, belonging' is the most frequent, and followed by 'acting entity', 'kinship, social relations', and 'relationship(area)'. In conclusion, the meanings of 'acting subjects' and 'relationships(area) need to be supplemented with explicit education. Other meanings need to be discussed, and decisions should be made in consideration of learning purpose and proficiency.

English Hedge Expressions and Korean Endings: Grammar Explanation for English-Speaking Leaners of Korean (영어 완화 표지와 한국어 종결어미 비교 - 영어권 학습자를 위한 문법 설명 -)

  • Kim, Young A
    • Journal of Korean language education
    • /
    • v.25 no.1
    • /
    • pp.1-27
    • /
    • 2014
  • This study investigates how common English hedge expressions such as 'I think' and 'I guess' appear in Korean, with the aim of providing explicit explanation for English-speaking leaners of Korean. Based on a contrastive analysis of spoken English and Korean corpus, this study argues three points: Firstly, 'I guess' appears with a wider variety of modalities in Korean than 'I think'. Secondly, this study has found that Korean textbooks contain inappropriate use of registers regarding the English translations of '-geot -gat-': although these markers are used in spoken Korean, they were translated into written English. Therefore, this study suggests that '-geot -gat-' be translated into 'I think' in spoken English, and into 'it seems' in the case of written English and narratives. Lastly, the contrastive analysis has shown that when 'I think' is used with deontic modalities such as 'I think I have to', Korean use '-a-ya-get-': the use of hedge marker 'I think' with 'I have to', which shows obligation or speaker's volition turns the deontic modalities into expressions of speaker's opinion.

Analysis of Korean Language Parsing System and Speed Improvement of Machine Learning using Feature Module (한국어 의존 관계 분석과 자질 집합 분할을 이용한 기계학습의 성능 개선)

  • Kim, Seong-Jin;Ock, Cheol-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.66-74
    • /
    • 2014
  • Recently a variety of study of Korean parsing system is carried out by many software engineers and linguists. The parsing system mainly uses the method of machine learning or symbol processing paradigm. But the parsing system using machine learning has long training time because the data of Korean sentence is very big. And the system shows the limited recognition rate because the data has self error. In this thesis we design system using feature module which can reduce training time and analyze the recognized rate each the number of training sentences and repetition times. The designed system uses the separated modules and sorted table for binary search. We use the refined 36,090 sentences which is extracted by Sejong Corpus. The training time is decreased about three hours and the comparison of recognized rate is the highest as 84.54% when 10,000 sentences is trained 50 times. When all training sentence(32,481) is trained 10 times, the recognition rate is 82.99%. As a result it is more efficient that the system is used the refined data and is repeated the training until it became the steady state.

Enhancing Korean Alphabet Unit Speech Recognition with Neural Network-Based Alphabet Merging Methodology (한국어 자모단위 음성인식 결과 후보정을 위한 신경망 기반 자모 병합 방법론)

  • Solee Im;Wonjun Lee;Gary Geunbae Lee;Yunsu Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.659-663
    • /
    • 2023
  • 이 논문은 한국어 음성인식 성능을 개선하고자 기존 음성인식 과정을 자모단위 음성인식 모델과 신경망 기반 자모 병합 모델 총 두 단계로 구성하였다. 한국어는 조합어 특성상 음성 인식에 필요한 음절 단위가 약 2900자에 이른다. 이는 학습 데이터셋에 자주 등장하지 않는 음절에 대해서 음성인식 성능을 저하시키고, 학습 비용을 높이는 단점이 있다. 이를 개선하고자 음절 단위의 인식이 아닌 51가지 자모 단위(ㄱ-ㅎ, ㅏ-ㅞ)의 음성인식을 수행한 후 자모 단위 인식 결과를 음절단위의 한글로 병합하는 과정을 수행할 수 있다[1]. 자모단위 인식결과는 초성, 중성, 종성을 고려하면 규칙 기반의 병합이 가능하다. 하지만 음성인식 결과에 잘못인식된 자모가 포함되어 있다면 최종 병합 결과에 오류를 생성하고 만다. 이를 해결하고자 신경망 기반의 자모 병합 모델을 제시한다. 자모 병합 모델은 분리되어 있는 자모단위의 입력을 완성된 한글 문장으로 변환하는 작업을 수행하고, 이 과정에서 음성인식 결과로 잘못인식된 자모에 대해서도 올바른 한글 문장으로 변환하는 오류 수정이 가능하다. 본 연구는 한국어 음성인식 말뭉치 KsponSpeech를 활용하여 실험을 진행하였고, 음성인식 모델로 Wav2Vec2.0 모델을 활용하였다. 기존 규칙 기반의 자모 병합 방법에 비해 제시하는 자모 병합 모델이 상대적 음절단위오류율(Character Error Rate, CER) 17.2% 와 단어단위오류율(Word Error Rate, WER) 13.1% 향상을 확인할 수 있었다.

  • PDF