조사어미사전은 한국어 연구 및 교육, 정보처리 분야에 두루 이용될 수 있는 범용적 전자사전을 지향하는 세종전자사전의 한 위성사전으로서, 한국어 조사와 어미에 대한 각종 언어 정보를 체계적이고 일관된 형식으로 표상하는 것을 목적으로 하고 있다. 그러한 목적을 달성하기 위해 본 연구 작업에서는 조사와 어미의 형태적 변이 양상과 조건을 상세히 밝히는 한편, 의미 통사적 특성과 제약에 관한 다양한 정보들을 가능한 한 풍부하게 제시하고 있다. 조사와 어미에 대하여 사전에 풍부하고 다양한 언어 정보를 표상하는 작업은 기존의 한국어 인쇄사전은 물론 전자사전에서도 본격적으로 시도되지 않았던 것으로, 본 사전에서 현재까지 기술하고 있는 다양한 정보들은 앞으로 한국어에 대한 순수 언어학적 연구만이 아니라 한국어 정보 처리 분야의 발전에 있어서도 기여하는 바가 적지 않을 것으로 기대한다.
본 논문은 LOD2 커뮤니티 과제 중 하나인 NLP2RDF를 한국어에 적용하면서 고안한 프레임워크에 대해 제시하고 있다. 이 프레임워크를 통해, 한국어 NLP2RDF는 다양한 한국어 자연언어처리 도구들로 부터의 결과물 및 다양한 한국어 언어 자원에 대한 활용도 높은 이용 방법에 대한 제시 및 국제적 상호 운용성을 위해 NIF(NLP Interchange Format)[1] 규격을 준수한 RDF(Resource Description Framework)를 생성하기 위한 방법론을 소개한다. 또한 NIF(NLP Interchange Format)를 통한 포맷 통일화 과정에서 발생하는 NIF 온톨로지의 불완전성에 대한 개선 방향에 대해서도 갼략하게 제시한다.
한국 수화는 시각, 공간언어로 한국어와는 상이한 문법체계를 가진 언어로 수화를 일차 언어로 사용하는 농인들에게 있어 복잡한 구조의 한국어 문장은 부담이 된다. 본 논문은 이런 한국어 문장의 복잡한 구조를 농인들이 이해하기 쉬운 구조의 전개방식으로 변환하는 수화 스크립트 생성 시스템을 제안한다. 시스템은 세 단계로 구성되는데, 첫 번째 단계는 한국어 문장의 결합범주문법을 이용한 구문 분석이며, 두 번째 단계는 농인들이 이해하기 수월한 전개방식으로의 절단위 재배열이고, 세 번째 단계는 공간이동을 고려한 스크립트 형태로의 변환이다. 본 논문은 한국 수화의 복문 실현 방법에 대해 살펴본 후, 이를 처리하는 시스템의 단계별 처리 방안에 대해 구체적으로 논의한다.
본 논문은 한국어 관용구 인식 알고리즘에 대하여 논의한다. 다음(daum) 전자 사전에는 관용구의 의미를, "두 개 이상의 단어로 이루어져 있으면서, 그 단어들의 의미만으로는 전체 의미를 알 수 없는, 특수한 의미를 나타내는 어구" 라고 설명되어 있다. 한국어 관용구의 길이는 2글자 ~ 4글자인 경우가 많으며 그 이상인 경우도 있다. 대부분의 관용구는 일반 사전에 동사와 명사를 기준으로 분류되어 있으며, 품사 표시나 구절 표시 없이 어절의 문자열 형태로만 표현되어 나타난다. 본 논문에서는 전자 사전에 품사 표시나 구절 표시 없이 어절 문자열 형태로 저장되어 있는 한국어 관용구를 입력 문장에서 인식하는 관용구 인식 알고리즘에 대하여 논의한다. 그리고 연어 인식과 명사의 의미 속성 처리에 대하여서도 논의한다.
프레임넷 (FrameNet) 프로젝트는 버클리에서 1997년에 처음 제안했으며, 최근에는 다양한 언어적 특징을 반영하여 여러 국가에서 사용되고 있다. 하지만 문장의 프레임을 분석하는 것은 자연언어처리 전문가들이 많은 시간을 들여야 한다. 이 때문에, 한국어 프레임넷을 처음 만들 때는 충분한 훈련을 받은 번역가들이 영어 프레임넷의 문장들과 그 주석 정보들을 직접 번역하는 방법을 사용했다. 결과적으로 상대적으로 적은 비용이 들지만, 여전히 한 문장에 여러 번 등장하는 프레임 정보를 모두 번역하고 에러를 분석해야 했기에 많은 노력이 들어갔다. 본 연구에서는 일본어와 한국어의 언어적 유사성을 사용하여 비교적 적은 비용으로 한국어 프레임넷을 확장하는 방법을 제시한다. 또한 프레임넷에 친숙하지 않은 사용자가 더욱 쉽게 프레임 정보를 활용할 수 있도록 PubAnnotation 기술을 도입하고 "조사"라는 특성을 고려한 Valence pattern 분류를 통해 한국어 공개 프레임넷 사이트를 개선하였다.
본 논문은 한국어와 영어 코퍼스 93GB를 활용하여 구축한 대형 사전학습기반 언어모델인 KE-T5를 소개한다. KE-T5는 한국어와 영어 어휘 64,000개를 포함하는 대규모의 언어모델로 다양한 한국어처리와 한국어와 영어를 모두 포함하는 번역 등의 복합언어 태스크에서도 높은 성능을 기대할 수 있다. KE-T5의 활용은 대규모의 언어모델을 기반으로 영어 수준의 복잡한 언어처리 태스크에 대한 연구들을 본격적으로 시작할 수 있는 기반을 마련하였다.
상호참조해결은 주어진 문서에서 상호참조해결 대상이 되는 멘션(mention)을 식별하고, 같은 개체(entity)를 의미하는 멘션을 찾아 그룹화하는 자연어처리 태스크이다. 한국어 상호참조해결에서는 멘션 탐지와 상호참조해결을 동시에 진행하는 end-to-end 모델과 포인터 네트워크 모델을 이용한 방법이 연구되었다. 구글에서 공개한 BERT 모델은 자연어처리 태스크에 적용되어 많은 성능 향상을 보였다. 본 논문에서는 한국어 상호참조해결을 위한 BERT 기반 end-to-end 신경망 모델을 제안하고, 한국어 데이터로 사전 학습된 KorBERT를 이용하고, 한국어의 구조적, 의미적 특징을 반영하기 위하여 의존구문분석 자질과 개체명 자질을 적용한다. 실험 결과, ETRI 질의응답 도메인 상호참조해결 데이터 셋에서 CoNLL F1 (DEV) 71.00%, (TEST) 69.01%의 성능을 보여 기존 연구들에 비하여 높은 성능을 보였다.
한국어 자연어처리 분야가 발달하면서 동형이의어 분별을 한 단계 넘어선 다의어 분별의 중요성이 점점 상승하고 있다. 최근에 다의어가 태깅된 "모두의 말뭉치"가 발표되었고, 이 말뭉치는 다의어가 태깅된 최초의 공개 말뭉치로써 다의어 연구가 본격적으로 진행될 수 있음을 의미한다. 본 논문에서는 이 말뭉치를 학습하여 작동하는 다의어 분별의 초기 모델을 제시하며, 이 모델의 실험 결과는 차후 연구를 위한 비교 기준점이 될 수 있다. 이 모델은 딥러닝을 사용하지 않은 통계형으로 개발되었고, 형태소분석과 동형이의어 분별은 기존의 UTagger로 해결하고 말뭉치 자원 외에도 UWordMap을 사용하여 다의어 분별을 보조하였다. 이 모델의 정확률은 약 87%이며, 다의어 분별 전에 형태소분석 또는 동형이의어 분별 단계에서 오류가 난 것을 포함한다. 현재까지 공개된 이 말뭉치는 오직 명사만 다의어 주석이 있기 때문에 명사만 정확률 측정 대상이 되었다. 이 연구를 통하여 다의어 분별의 어려움과, 다의어 분별에는 동형이의어 분별과는 다른 방법이 필요하다는 것을 확인할 수 있었다.
한국어 용언의 형태소 정보처리의 특성을 규명하기 위해 피동의 처리 양상을 살펴보았다. 한국어의 피동문은 용언에 파생접사가 붙어 이루어지는 경우와 '-어 지다'와 같이 구문 변형에 의해 이루어지는 경우로 나눌 수 있다. 본 연구에서는 이 중 피동 파생접사 '-이, -히, -리, -기'가 붙은 피동사만을 선정하여 고려대학교에 재학중인 일반인 학생을 대상으로 점화어휘판단 관제를 실시하였다. 실험조건은 표면적 형태와 기능으로 구분하여 4조건으로 설계하였고 SOA는 150msec과 750msec로 나누었다. 실험 결과 피동('어근+파생접사')의 정보처리는 선행연구의 '어간+(시제)선어말어미'의 결과와 유사한 형태를 보였으며, '어간+(연결)어말어미'와는 다른 결과를 보였다. 이런 결과로 미루어보아 어근과 접사는 각각 따로 저장되어 있다기보다는 '어근+접사'의 형태로 심성어휘집에 저장되어 있는 것으로 보인다. 기존의 형태소 분석에서 거론되고 있는 Fullist, Decomposition, Hybrid의 세 가지 모형으로는 한국어 용언의 다양한 표상 및 처리 과정을 설명하기 어려우므로 새로운 모형을 제시하고자 한다.
본 연구는 머리어-후행언어(head-final language)로 분류되는 한국어의 통사 및 의미 처리 과정의 언어간(cross linguistic) 일반성과 언어내(intra-language) 특이성을 ERP(event- related potentials) 실험결과를 통해 알아보고자 하였다. 한국어 문장처리 과정에서의 통사 및 의미 처리특성은, 우선 이들을 지표하는 각각의 오류문을 통해 P600과 N400 이라는 언어일반의 처리과정을 보이면서도 각 성분의 영역분포는 오류가 출현된 위치에 따라 분기하고 있음을 관찰할 수 있었다. 곧, 문미위치의 술어오류에서 중심-두정 부위의 활성화 우세로 각 오류간 영역분화를 보이는 패턴을 새롭게 확인하였다. 이로써 오류의 유형별 재분류과정으로 드러난 오류출현 위치가 오류의 유형 내에 영향을 끼치는 한 변수가 될 수 있으며. 이는 이들 보어 및 술어를 구성하는 고유의 범주 특성으로 해석할 수 있는 근거가 될 수 있음도 아울러 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.