최근 수년간 한국어를 위한 어휘의미망에 대한 관심은 꾸준히 높아지고 있지만, 그 결과물을 어떻게 평가하고 활용할 것인가에 대한 방안은 이루어지지 않고 있다. 본 논문에서는 단어클러스터링 시스템 개발을 통하여, 어휘의미망에 의해 확장되기 전후의 클러스터링을 수행하여 데이터를 서로 비교하였다. 단어클러스터링 시스템 개발을 위해 사용된 학습 데이터는 신문 말뭉치 기사로 총 68,455,856 어절 규모이며, 특성벡터와 벡터공간모델을 이용하여 시스템A를 완성하였다. 시스템B는 구축된 '[-하]동사류' 3,656개의 어휘의미를 포함하는 동사 어휘의미망을 활용하여 확장된 것으로 확장대상정보를 선택하여 특성벡터를 재구성한다. 대상이 되는 실험 데이터는 '다국어 어휘의미망-코어넷'으로 클러스터링 결과 나타난 어휘의 세 번째 층위까지의 노드 동일성 여부로 정확률을 검수하였다. 같은 환경에서 시스템A와 시스템B를 비교한 결과 단어클러스터링의 정확률이 45.3%에서 46.6%로의 향상을 보였다. 향후 연구는 어휘의미망을 활용하여 좀 더 다양한 시스템에 체계적이고 폭넓은 평가를 통해 전산시스템의 향상은 물론, 연구되고 있는 많은 어휘의미망에 의미 있는 평가 방안을 확대시켜 나가야 할 것이다.
언어 장애인에게 기존의 키보드에 의한 문자입력 방법보다 원활하고 편리한 의사전달 환경을 제공하기 위한 아이콘 언어 인터페이스를 설계한다. 이를 위하여 활용성이 높은 대화 영역으로부터 구축한 원시 말뭉치를 대상으로 어휘 구사 경향과 특성을 분석하고 형태소, 구문, 의미 분석을 적용하여 아이콘에 부여되는 한국어의 어휘와 의미를 추출한다. 사용자가 직관적으로 인지하고 전달할 수 있는 아이콘 영역을 선별하고 추출한 한국어의 어휘와 의미를 정합시킨다. 이웃하는 아이콘간의 연결로부터 전달하고자 하는 의미적 상황을 만들어내기 위하여, 아이콘 언어의 어휘와 품사, 문법 규칙, 의미체계를 정의하여 아이콘 언어를 설계한다. 아이콘 언어에서 나타날 수 있는 언어적 애매성을 해결하기 위한 방법으로 범용의 한국어 의미사전과 술어 중심의 하위범주화사전으로부터 아이콘 언어에 대한 상황중심의 의미 데이터를 구축한다. 이를 바탕으로 아이콘 언어 인터페이스로부터 한국어를 의미적인 범주에서 생성한다.
본 논문은 한국어 문서 감정분류를 위한 중요한 어휘 자원인 감정자질(Sentiment Feature)의 의미지향성(Semantic Orientation) 추정을 위해 일반적인 특성과 영역(Domain) 의존적인 특성을 반영하여 한국어 문서 감정분류(Sentiment Classification)의 성능 향상을 얻을 수 있는 기법을 제안한다. 감정자질의 의미지 향성은 검색 엔진을 통해 추출한 각 감정 자질의 스니핏(Snippet)과 실험 말뭉치를 이용하여 추정할 수 있다. 검색 엔진을 통해 추출된 스니핏은 감정자질의 일반적인 특성을 반영하며, 실험 말뭉치는 분류하고자 하는 영역 의존적인 특성을 반영한다. 이렇게 얻어진 감정자질의 의미지향성 수치는 각 문장의 감정강도를 추정하기 위해 이용되며, 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정자질의 가중치를 책정한다. 최종적으로 학습 과정에서 긍정 문서에서는 긍정 감정자질, 부정 문서에서는 부정 감정자질을 대상으로 추가 가중치를 부여하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 3.1%의 성능향상을 보였다.
문자 기반 LSTM CRF는 개체명 인식에서 높은 인식을 보여주고 있는 LSTM-CRF 방식에서 미등록어 문제를 해결하기 위해 단어 단위의 임베딩 뿐만 아니라 단어를 구성하는 문자로부터 단어 임베딩을 합성해 내는 방식으로 기존의 LSTM CRF에서의 성능 향상을 가져왔다. 한편, 개체명 인식에서 어휘 사전은 성능 향상을 위한 외부 리소스원으로 활용하고 있는데 다양한 사전 매칭 방법이 파생될 수 있음에도 이들 자질들에 대한 비교 연구가 이루어지지 않았다. 본 논문에서는 개체명 인식을 위해 다양한 사전 매칭 자질들을 정의하고 이들을 LSTM-CRF의 입력 자질로 활용했을 때의 성능 비교 결과를 제시한다. 실험 결과 사전 자질이 추가된 LSTM-CRF는 ETRI 개체명 말뭉치의 학습데이터에서 F1 measure 기준 최대 89.34%의 성능까지 달성할 수 있었다.
본 논문에서는 맥락에 따라 개체명의 범주가 달라지는 어휘를 중심으로 교차 태깅된 개체명의 성능을 레이블과 스팬 정답률, 문장 성분과 문장 위치에 따른 정답률로 나누어 살펴 보았다. 레이블의 정확도는 KoGPT2, mBERT, KLUE-RoBERTa 순으로 정답률이 높아지는 양상을 보였다. 스팬 정답률에서는 mBERT가 KLUE-RoBERTa보다 근소하게 성능이 높았고 KoGPT2는 매우 낮은 정확도를 보였다. 다만, KoGPT2는 개체명이 문장의 끝에 위치할 때는 다른 모델과 비슷한 정도로 성능이 개선되는 결과를 보였다. 문장 종결 위치에서 인식기의 성능이 좋은 것은 실험에 사용된 말뭉치의 문장 성분이 서술어일 때 명사의 중첩이 적고 구문이 패턴화되어 있다는 특징과 KoGPT2가 decoder기반의 모델이기 때문으로 여겨지나 이에 대해서는 후속 연구가 필요하다.
국어에서는 어떠한 대상 의 수량을 표현할 때 수사와 함께 분류사(classifier)를 사용한다. 따라서 분류사는 그 특성상 수량 표현 구문을 형성하는 대상 명사와 의미적으로 밀접한 관련을 지니게 되는데, 단순히 명사를 셈하는 것 뿐 아니라 명사의 의미적 특성을 명세(specify)해 준다고 할 수 있다. 본 연구에서는 이러한 명사와 분류사의 연관성에 초점을 맞추어 분류사의 사용에 따른 명사의 범주화 및 계층 구조를 보이고, 컴퓨터 말뭉치 자료를 이용하여 그 관계를 좀더 명확히 밝히는 것을 목적으로 한다. 이러한 연구는 언어를 전산적으로 처리하는데 필수적인 전산어휘부(computational lexicon)의 구축에 필요한 기초 작업이 될 수 있다.
word2vec 등 기존의 단어 임베딩 기법은 원시 말뭉치에 출현한 단어들만을 대상으로 각 단어를 다차원 실수 벡터 공간에 고정된 길이의 벡터로 표현하기 때문에 형태론적으로 풍부한 표현체계를 가진 언어에 대한 단어 임베딩 기법에서는 말뭉치에 출현하지 않은 단어들에 대한 단어 벡터를 표현할 때 OOV(out-of-vocabulary) 문제가 빈번하게 발생한다. 문장을 구성하는 단어 벡터들로부터 문장 벡터를 구성하는 문장 임베딩의 경우에도 OOV 단어가 포함되었을 때 문장 벡터를 정교하게 구성하지 못하는 문제점이 있다. 특히, 교착어인 한국어는 어휘형태소와 문법형태소가 결합되는 형태론적 특성 때문에 미등록어의 임베딩 기법은 성능 향상의 중요한 요인이다. 본 연구에서는 단어의 형태학적인 정보를 이용하는 방식을 문장 수준으로 확장하고 OOV 단어 문제에 강건한 병렬 Tri-LSTM 문장 임베딩을 제안한다. 한국어 감정 분석 말뭉치에 대해 성능 평가를 수행한 결과 한국어 문장 임베딩을 위한 임베딩 단위는 형태소 단위보다 문자 단위가 우수한 성능을 보였으며, 병렬 양방향 Tri-LSTM 문장 인코더는 86.17%의 감정 분석 정확도를 달성하였다.
본 논문에서는 서술형 정답을 요구하는 질의에 대해 올바른 서술형 정답을 추출하는 서술형질의응답시스템에 대해 기술한다. 질의응답시스템에서 요구되는 다양한 서술형 정답을 추출하기 위해 정답 유형을 10가지로 정의하였다. 말뭉치로부터 각 서술형 정답 유형에 대한 정답 패턴을 정의하고, 패턴별 제약 규칙 및 각 유형별 패턴적용 순위화 등을 사용하여 정확한 서술형 정답이 추출되도록 하였다. 정답 패턴은 서술형 정답의 구문 구조 및 각 패턴 또는 정답 유형별 실마리 어휘 등으로 구성된다. 현재 학습되지 않은 일반 문서에 대해 59.2%의 서술형 정답 추출 정확도를 보이며, 시스템 성능 향상을 위해 연구가 진행중이다.
자연어처리의 여러 분야에서 기본요소로 사용되는 영어 품사 태거를 UMLS의 의학용어 어휘정보와 OANC(Open American National Corpus) 말뭉치를 이용해 의학용 문서도 분석 가능한 의학용 영어 품사 태거를 제안한다. TRIE구조를 이용한 단어 묶음 모델로 여러 어절의 의학용어를 하나로 묶고 HMM(Hiden Markov Model)을 이용한 품사 태거로 해당하는 품사를 부착한다.
최근 수년간 한국어를 위한 어휘의미망에 대한 관심은 꾸준히 높아지고 있지만. 그 결과물을 어떻게 평가하고 활용할 것인가에 대한 방안은 이루어지지 않고 있다. 본 논문에서는 단어클러스터링 시스템 개발을 통하여, 어휘의미망에 의해 확장되기 전후의 클러스터링을 수행하여 데이터를 서로 비교하였다 단어클러스터링 시스템 개발을 위해 사용된 학습 데이터는 신문 말뭉치 기사로 총 68.455.856 어절 규모이며, 특성벡터와 벡터공간모델을 이용하여 시스템A를 완성하였다. 시스템B는 구축된 '(-하)동사류' 3,656개의 어휘의미를 포함하는 동사 어휘의미망을 활용하여 확장된 것으로 확장대상정보를 선택하여 특성벡터를 재구성한다. 대상이 되는 실험 데이터는 '다국어 어휘의미망-코어넷'으로 클러스터링 결과 나타난 어휘의 세 번째 층위까지의 노드 동일성 석부로 정확률을 검수하였다. 같은 환경에서 시스템A와 시스템B를 비교한 결과 단어클러스터링의 정확률이 45.3%에서 46.6%로의 향상을 보였다. 향후 연구는 어휘의미망을 활용하여 좀 더 다양한 시스템에 체계적이고 폭넓은 평가를 통해 전산시스템의 향상은 물론. 연구되고 있는 많은 어휘의미망에 의미 있는 평가 방안을 확대시켜 나가야 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.