• 제목/요약/키워드: 한국어 어절

검색결과 364건 처리시간 0.027초

품사 표지 부착 말뭉치 검증 (Verification of POS tagged Corpus)

  • 이미경;정한민;성원경;박동인
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2005년도 제17회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.145-150
    • /
    • 2005
  • 본 논문에서는 자연어 처리 연구에서 이용되는 품사 표지 부착 말뭉치의 오류 검증 방안에 대해 제안한다. 현재까지의 품사 표지 부착 말뭉치들은 정제보다는 구축에 중점을 두고 있으며, 기존의 오류 검출과 정정 방안에 관련된 연구들은 기 구축된 말뭉치를 대상으로 한 것이 아니라, 품사 표지 부착 시스템의 후 처리에 집중하고 있다. 형태소 분석기나 품사 표지 부착 시스템의 학습에 이용되는 품사 표지 부착 말뭉치가 오류 검증 단계를 거친다면 이 시스템들은 좀 더 높은 신뢰성을 가지게 될 것이다. 본 논문에서는 품사 표지부착 말뭉치 검증을 위한 어절 분할 오류, 철자 오류, 표지 부착 오류, 형식 오류, 일관성 오류의 5가지 오류 유형과 검증 방안을 제안한다. 또한 제안한 방법에 따라 세종 계획의 형태소 분석 말뭉치의 오류를 검증해 보았으며, 그 결과 말뭉치 오류 정제가 말뭉치의 신뢰도를 향상시킬 수 있음을 보인다.

  • PDF

Peak 파라미터와 피치 검색테이블을 이용한 억양 생성방식 연구 (A Study on Generation Method of Intonation using Peak Parameter and Pitch Lookup-Table)

  • 장석복;김형순
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.184-190
    • /
    • 1999
  • 본 논문에서는 Text-to-Speech 시스템에서 사용할 억양 모델을 위해 음성 DB에서 모델 파라미터와 피치 검색테이블(lookup-table)을 추출하여 미리 구성하고, 합성시에는 이를 추정하여 최종 F0 값을 생성하는 자료기반 접근방식(data-driven approach)을 사용한다. 어절 경계강도(break-index)는 경계강도의 특성에 따라 고정적 경계강도와 가변적 경계강도로 세분화하여 사용하였고, 예측된 경계강도를 기준으로 억양구(Intonation Phrase)와 액센트구(Accentual Phrase)를 설정하였다. 특히, 액센트구 모델은 인지적, 음향적으로 중요한 정점(peak)을 정확하게 모델링하는 것에 주안점을 두어 정점(peak)의 시간축, 주파수축 값과 이를 기준으로 한 앞뒤 기울기를 추정하여 4개의 파라미터로 설정하였고, 이 파라미터들은 CART(Classification and Regression Tree)를 이용하여 예측규칙을 만들었다. 경계음조가 나타나는 조사, 어미는 정규화된(normalized) 피치값과 key-index로 구성되는 검색테이블을 만들어 보다 정교하게 피치값을 예측하였다. 본 논문에서 제안한 억양 모델을 본 연구실에서 제작한 음성합성기를 통해 합성하여 청취실험을 거친 결과, 기존의 상용 Text-to-Speech 시스템에 비해 자연스러운 합성음을 얻을 수 있었다.

  • PDF

구문분석 말뭉치를 이용한 문법 관계의 선호 체언 어휘와 의미 유형 연구 (A Treebank-Based Approach to Preferred Nominal Words in Grammatical Relations and their Semantic Types)

  • 홍정하
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2008년도 제20회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.35-41
    • /
    • 2008
  • 이 논문은 각 문법 관계(grammatical relation)에서 선호되는 체언 어휘를 파악하고, 이 어휘들의 의미적 유형 및 그 위계를 파악하는 것이 목적이다. 이를 위해 80만 어절의 21세기 세종계획 구문분석 말뭉치에서 그 분포를 추출하고, 통계적 검증을 통해 각 문법 관계에서 선호되는 체언 어휘를 선별한다. 이 연구에서 관찰하는 문법 관계는 주어, 목적어, 용언수식어로 하며, 이들 문법 관계에서 선호되는 어휘 추출 대상 품사는 대명사, 고유명사, 일반명사로 한다. 한정성의 강도에 따라 주어 분포 경향이 나타나며, 이에 따라 대명사 > 고유명사 > 일반명사 순으로 주어 분포 경향이 나타난다. 그러나 일반적 예측과 다르게 한정성의 강도가 더 강한 것으로 알려진 대명사가 고유명사보다 목적어와 용언수식어에서 분포 경향이 더 강하여, 일반명사 > 대명사 > 고유명사의 순으로 분포 경향이 나타난다. 대명사, 고유명사, 일반명사는 공통적으로 주어에서는 사람 지시어, 목적어에서는 사물과 장소 지시어, 그리고 용언수식어에서는 시공간 표현이 선호되어 분포한다. 특히 대명사는 각 문법기능에서 인칭대명사의 경우 인칭에 따라, 그리고 지시대명사의 경우 원근칭에 따라 선호도의 차이를 보인다. 이러한 체언 어휘의 의미적 분포 특성은 문법 관계에 통사적 기능 외에도 의미적 경향이 반영된 것으로 고려될 수 있다.

  • PDF

동적 프로그래밍을 이용한 OCR에서의 띄어쓰기 교정 (Using Dynamic Programming for Word Segmentation in OCR)

  • 박호민;김창현;노경목;천민아;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.243-245
    • /
    • 2016
  • 광학 문자 인식(OCR)을 통해 문서의 글자를 인식할 때 띄어쓰기 오류가 발생한다. 본 논문에서는 이를 해결하기 위해 OCR의 후처리 과정으로 동적 프로그래밍을 이용한 분절(Segmentation) 방식의 띄어쓰기 오류 교정 시스템을 제안한다. 제안하는 시스템의 띄어쓰기 오류 교정 과정은 다음과 같다. 첫째, 띄어쓰기 오류가 있다고 분류된 어절 내의 공백을 모두 제거한다. 둘째, 공백이 제거된 문자열을 동적 프로그래밍을 이용한 분절로 입력 문자열에 대하여 가능한 모든 띄어쓰기 후보들을 찾는다. 셋째, 뉴스 기사 말뭉치와 그 말뭉치에 기반을 둔 띄어쓰기 확률 모델을 참조하여 각 후보의 띄어쓰기 확률을 계산한다. 마지막으로 띄어쓰기 후보들 중 확률이 가장 높은 후보를 교정 결과로 제시한다. 본 논문에서 제안하는 시스템을 이용하여 OCR의 띄어쓰기 오류를 해결할 수 있었다. 향후 띄어쓰기 오류 교정에 필요한 언어 규칙 등을 시스템에 추가한 띄어쓰기 교정시스템을 통하여 OCR의 최종적인 인식률을 향상에 대해 연구할 예정이다.

  • PDF

구간 분할과 논항정보를 이용한 구문분석시스템 구현에 관한 연구 (A Study of Parsing System Implementation Using Segmentation and Argument Information)

  • 박용욱;권혁철
    • 한국멀티미디어학회논문지
    • /
    • 제16권3호
    • /
    • pp.366-374
    • /
    • 2013
  • 본 논문에서는 한국어 구문분석에서 발생하는 중의성을 해결하기 위하여 구간분할 방법과 논항정보를 사용하여 개선한 구문분석시스템을 소개한다. 본 논문에서 제안하는 구문분석 시스템은 어절대신 형태소를 입력으로 사용하고, 또한 주어진 형태소에 대하여 가능한 모든 구문 분석 구조를 생성하는 알고리즘을 사용한다. 따라서 많은 중의성을 포함한 구문 분석 결과를 생성한다. 이러한 중의성 구조 결과를 해결하기 위하여 세 가지 방법을 사용했다. 첫째 방법은 형태소분석 결과에서 중의성을 제거하는 방법이고 두 번째는 구문 분석시 구간 분할하는 방법, 세 번째 방법은 논항정보를 이용하는 것이다. 이러한 방법을 사용하여 많은 중의성을 제거할 수 있었다. 실험을 통하여 약 53%의 중의성을 제거할 수 있었음을 보여준다.

순환 신경망 병렬화를 사용한 의존 구문 분석 및 의미역 결정 통합 모델 (Joint Model for Dependency Parser and Semantic Role Labeling using Recurrent Neural Network Parallelism)

  • 박성식;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.276-279
    • /
    • 2019
  • 의존 구문 분석은 문장을 구성하는 성분들 간의 의존 관계를 분석하고 문장의 구조적 정보를 얻기 위한 기술이다. 의미역 결정은 문장에서 서술어에 해당하는 어절을 찾고 해당 서술어의 논항들을 찾는 자연어 처리의 한 분야이다. 두 기술은 서로 밀접한 상관관계가 존재하며 기존 연구들은 이 상관관계를 이용하기 위해 의존 구문 분석의 결과를 의미역 결정의 자질로써 사용한다. 그러나 이런 방법은 의미역 결정 모델의 오류가 의존 구문 분석에 역전파 되지 않으므로 두 기술의 상관관계를 효과적으로 사용한다고 보기 어렵다. 본 논문은 포인터 네트워크 기반의 의존 구문 분석 모델과 병렬화 순환 신경망 기반의 의미역 결정 모델을 멀티 태스크 방식으로 학습시키는 통합 모델을 제안한다. 제안 모델은 의존 구문 분석 및 의미역 결정 말뭉치인 UProbBank를 실험에 사용하여 의존 구문 분석에서 UAS 0.9327, 의미역 결정에서 PIC F1 0.9952, AIC F1 0.7312의 성능 보였다.

  • PDF

패션앱 후기글 평가분석에 기반한 의류 검색추천 챗봇 개발을 위한 학습데이터 EVAD 구축 (Construction of Evaluation-Annotated Datasets for EA-based Clothing Recommendation Chatbots)

  • 최수원;황창회;유광훈;남지순
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.467-472
    • /
    • 2021
  • 본 연구는 패션앱 후기글에 나타나는 구매자의 의견에 대한 '평가분석(Evaluation Analysis: EA)'을 수행하여, 이를 기반으로 상품의 검색 및 추천을 수행하는 의류 검색추천 챗봇을 개발하는 LICO 프로젝트의 언어데이터 구축의 일환으로 수행되었다. '평가분석 트리플(EAT)'과 '평가기반요청 쿼드러플(EARQ)'의 구성요소들에 대한 주석작업은, 도메인 특화된 단일형 핵심어휘와 다단어(MWE) 핵심패턴들을 FST 방식으로 구조화하는 DECO-LGG 언어자원에 기반하여 반자동 언어데이터 증강(SSP) 방식을 통해 진행되었다. 이 과정을 통해 20여만 건의 후기글 문서(230만 어절)로 구성된 EVAD 평가주석데이터셋이 생성되었다. 여성의류 도메인의 평가분석을 위한 '평가속성(ASPECT)' 성분으로 14가지 유형이 분류되었고, 각 '평가속성'에 연동된 '평가내용(VALUE)' 쌍으로 전체 35가지의 {ASPECT-VALUE} 카테고리가 분류되었다. 본 연구에서 구축된 EVAD 평가주석 데이터의 성능을 평가한 결과, F1-Score 0.91의 성능 평가를 획득하였으며, 이를 통해 향후 다른 도메인으로의 확장된 적용 가능성이 유효함을 확인하였다.

  • PDF

기술 용어에 대한 한국어 정의 문장 자동 생성을 위한 순환 신경망 모델 활용 연구 (Research on the Utilization of Recurrent Neural Networks for Automatic Generation of Korean Definitional Sentences of Technical Terms)

  • 최가람;김한국;김광훈;김유일;최성필
    • 한국문헌정보학회지
    • /
    • 제51권4호
    • /
    • pp.99-120
    • /
    • 2017
  • 본 논문에서는 지속적으로 커져가는 산업 시장에 대해 관련 연구자들이 이를 효율적으로 분석할 수 있는 반자동 지원 체제개발을 위한 기술 용어와 기술 개념에 대한 정의문 및 설명문을 자동으로 생성하는 한국어 문장 생성 모델을 제시한다. 한국어 정의 문장 생성을 위하여 딥러닝 기술 중 데이터의 전/후 관계를 포함한 시퀀스 레이블링이 가능한 LSTM을 활용한다. LSTM을 근간으로 한 두 가지 모델은 기술명을 입력할 시 그에 대한 정의문 및 설명문을 생성한다. 다양하게 수집된 대규모 학습 말뭉치를 이용해 실험한 결과, 본 논문에서 구현한 2가지 모델 중 CNN 음절 임베딩을 활용한 어절 단위 LSTM 모델이 용어에 대한 정의문 및 설명문을 생성하는데 더 나은 결과를 도출시킨다는 사실을 확인하였다. 본 논문의 연구 결과를 바탕으로 동일한 주제를 다루는 문장 집합을 생성할 수 있는 확장 모델을 개발할 수 있으며 더 나아가서는 기술에 대한 문헌을 자동으로 작성하는 인공지능 모델을 구현할 수 있으리라 사료된다.

PPEditor: 한국어 의존구조 부착을 위한 반자동 말뭉치 구축 도구 (PPEditor: Semi-Automatic Annotation Tool for Korean Dependency Structure)

  • 김재훈;박은진
    • 정보처리학회논문지B
    • /
    • 제13B권1호
    • /
    • pp.63-70
    • /
    • 2006
  • 말뭉치(corpus)는 많은 언어 정보를 포함하고 있으며, 언어처리 및 계산언어학 분야에서 다양한 용도로 사용되고 있다. 그러나 말뭉치에 언어 정보를 부착하는 데는 많은 시간과 인력이 소요된다. 이 문제를 완화시키기 위해서 말뭉치 구축 도구가 반드시 요구된다. 본 논문에서는 한국어 의존구조 부착을 위한 말뭉치 구축 도구의 설계 및 구현에 관해서 기술한다. 가장 이상적인 방법은 주석자가 전혀 개입하지 않고, 말뭉치를 구축하는 것이나 이것은 사실상 불가능하다. 따라서 대부분의 말뭉치 구축 도구는 반자동으로 구성되어 있으며, 본 논문에서 제안된 도구도 반자동이다. 제안된 도구는 언어 분석기의 분석 결과에 내포된 오류를 효과적으로 수정할 수 있고, 또한 가능한 한 반복적인 작업을 피할 수 있으며 쉽게 사용할 수 있도록 인터페이스를 설계하였다. 제안된 시스템을 이용해서 20어절 이상의 1만 문장에 의존구조를 부착해 보았다. 잘 훈련된 8명의 주석자들이 매일 4시간씩 2개월 동안 구축하였으며, 그 결과는 정확하고 일관성 있는 말뭉치를 구축할 수 있었으며, 작업 시간과 인력도 크게 줄일 수 있었다.

동적 윈도우를 갖는 조건부확률 모델을 이용한 한국어 문맥의존 철자오류 교정 규칙의 재현율 향상 (Improving Recall for Context-Sensitive Spelling Correction Rules using Conditional Probability Model with Dynamic Window Sizes)

  • 최현수;권혁철;윤애선
    • 정보과학회 논문지
    • /
    • 제42권5호
    • /
    • pp.629-636
    • /
    • 2015
  • 한국어 맞춤법 검사기가 교정하는 오류어의 유형은 크게 단순 철자오류와 문맥의존 철자오류로 구분할 수 있다. 이 중 문맥의존 철자오류는 어절(word)단위로 봤을 때는 올바르지만, 문맥을 고려하였을 때 오류가 되는 유형으로, 교정 난도가 매우 높다. 문맥의존 철자오류는 글을 쓰는 사람들도 자주 저지르는 오류이므로, 이를 잘 검색하여 정확하게 교정하는 것이 맞춤법 검사기의 사용자가 갖는 신뢰도에 큰 영향을 미친다. 높은 정확도가 매우 중요하므로, 문맥의존 철자오류의 교정 방법은 대부분 규칙에 기반한다. 반대 급부로 재현율이 매우 낮다는 단점을 갖는다. 문맥의존 철자오류의 교정에서 재현율을 높이기 위한 방법은 크게 언어지식을 이용하여 규칙을 일반화하는 방법과 통계 정보에 기반을 하여 공기 어휘의 제약 조건을 확장하는 방법으로 나뉠 수 있다. 기존 연구는 언어지식을 이용하여 규칙을 일반화하는 다양한 방식을 연구했으나, 최고 성능이 평균 정확도 95.19%, 평균 재현율 37.56%을 보였다. 본 논문에서는 통계정보에 기반한 규칙의 확장 방식을 제안한다. 동적 윈도우를 갖는 조건부확률 모델을 이용한 방법이며, 최고 성능은 평균 정확도 97.23%, 평균 재현율 50.50%을 보여주었다.