• Title/Summary/Keyword: 한국어 뉴스

Search Result 115, Processing Time 0.021 seconds

Graph Learning System for Analyzing Bias among News Using Keyword Distance Model (주제어 문장거리를 이용한 뉴스 편향성 분석 그래프 학습)

  • Cho Chanwoo;Cho Chanhyung
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.533-538
    • /
    • 2023
  • 문서에서 저자의 의도와 주제, 그 안에 포함된 감성을 분석하는 것은 자연어 연구의 핵심적인 주제이다. 이와 유사하게 특정 글에 포함된 정치적 문화적 편향을 분석하는 것 역시 매우 의미 있는 연구주제이다. 우리는 최근 발생한 한 사건에 대하여 여러 신문사와 해당 신문사에서 생산한 기사를 중심으로 해당 글의 정치적 편향을 정량화 하는 방법을 제시한다. 그 방법은 선택된 주제어들의 문장 공간에서의 거리를 중심으로 그래프를 생성하고, 생성된 그래프의 기계학습을 통하여 편향과 특징을 분석하였다. 그리고 그 그래프들의 시간적 변화를 추적하여 특정 신문사에서 특정 사건에 대한 입장이 시간적으로 어떻게 변화하였는지를 동적으로 보여주는 그래프 애니메이션 시스템을 개발하였다. 실험을 위하여 최근 이슈에 대하여 12개의 신문사에서 약 2000여 개의 기사를 수집하였다. 그 결과, 약 82%의 정확도로 일반적으로 알려진 정치적 편향을 예측할 수 있었다. 또한, 학습 데이터에 쓰이지 않은 신문기사를 활용하여도 같은 정도의 정확도를 보임을 알 수 있었다. 우리는 이를 통하여 신문기사에서의 정치적 편향은 작성자나 신문사의 특성이 아니라 주제어들의 문장 공간에서의 거리 관계로 특성화할 수 있음을 보였다. 할 수 있다.

  • PDF

A Semi-automatic Annotation Tool based on Named Entity Dictionary (개체명 사전 기반의 반자동 말뭉치 구축 도구)

  • Noh, Kyung-Mok;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Yoon, Ho;Kim, Jae-Kyun;Kim, Jae-Hoon
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.309-313
    • /
    • 2017
  • 개체명은 인명, 지명, 조직명 등 문서 내에서 중요한 의미를 가지므로 질의응답, 요약, 기계번역 분야에서 유용하게 사용되고 있다. 개체명 인식은 문서에서 개체명에 해당하는 단어를 찾아 개체명 범주를 부착하는 작업을 말한다. 개체명 인식 연구에는 개체명 범주가 부착된 개체명 말뭉치를 사용한다. 개체명의 범주는 연구 분야에 따라 다양하게 정의되므로 연구 분야에 적합한 개체명 말뭉치가 필요하다. 하지만 이런 말뭉치를 구축하는 일은 시간과 인력이 많이 필요하다. 따라서 본 논문에서는 개체명 사전 기반의 반자동 말뭉치 구축 도구를 제안한다. 제안하는 도구는 크게 전처리, 사용자 태깅, 후처리 단계로 나뉜다. 전처리 단계는 자동으로 개체명을 찾는 단계이다. 약 11만 개의 개체명을 기반으로 하여 트라이(trie) 구조의 개체명 사전을 구축한 후 사전을 이용하여 개체명을 자동으로 찾는다. 사용자 태깅 단계는 사용자가 수동으로 개체명을 태깅하는 단계이다. 전처리 단계에서 찾은 개체명 중 오류가 있는 개체명들은 수정하거나 삭제하고, 찾지 못한 개체명들은 사용자가 추가로 태깅하는 단계이다. 후처리 단계는 태깅한 결과로부터 사전 정보를 갱신하는 단계이다. 제안한 말뭉치 구축 도구를 이용하여 752개의 뉴스 기사에 대해 개체명을 태깅한 결과 7,620개의 개체명이 사전에 추가되었다. 제안한 도구를 사용한 결과 사용하지 않았을 때 비해 약 57.6% 정도 태깅 횟수가 감소했다.

  • PDF

Comparison of ICA Methods for the Recognition of Corrupted Korean Speech (잡음 섞인 한국어 인식을 위한 ICA 비교 연구)

  • Kim, Seon-Il
    • 전자공학회논문지 IE
    • /
    • v.45 no.3
    • /
    • pp.20-26
    • /
    • 2008
  • Two independent component analysis(ICA) algorithms were applied for the recognition of speech signals corrupted by a car engine noise. Speech recognition was performed by hidden markov model(HMM) for the estimated signals and recognition rates were compared with those of orginal speech signals which are not corrupted. Two different ICA methods were applied for the estimation of speech signals, one of which is FastICA algorithm that maximizes negentropy, the other is information-maximization approach that maximizes the mutual information between inputs and outputs to give maximum independence among outputs. Word recognition rate for the Korean news sentences spoken by a male anchor is 87.85%, while there is 1.65% drop of performance on the average for the estimated speech signals by FastICA and 2.02% by information-maximization for the various signal to noise ratio(SNR). There is little difference between the methods.

Automatic Generation of Concatenate Morphemes for Korean LVCSR (대어휘 연속음성 인식을 위한 결합형태소 자동생성)

  • 박영희;정민화
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.407-414
    • /
    • 2002
  • In this paper, we present a method that automatically generates concatenate morpheme based language models to improve the performance of Korean large vocabulary continuous speech recognition. The focus was brought into improvement against recognition errors of monosyllable morphemes that occupy 54% of the training text corpus and more frequently mis-recognized. Knowledge-based method using POS patterns has disadvantages such as the difficulty in making rules and producing many low frequency concatenate morphemes. Proposed method automatically selects morpheme-pairs from training text data based on measures such as frequency, mutual information, and unigram log likelihood. Experiment was performed using 7M-morpheme text corpus and 20K-morpheme lexicon. The frequency measure with constraint on the number of morphemes used for concatenation produces the best result of reducing monosyllables from 54% to 30%, bigram perplexity from 117.9 to 97.3. and MER from 21.3% to 17.6%.

Generation of Natural Referring Expressions by Syntactic Information and Cost-based Centering Model (구문 정보와 비용기반 중심화 이론에 기반한 자연스러운 지시어 생성)

  • Roh Ji-Eun;Lee Jong-Hyeok
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1649-1659
    • /
    • 2004
  • Text Generation is a process of generating comprehensible texts in human languages from some underlying non-linguistic representation of information. Among several sub-processes for text generation to generate coherent texts, this paper concerns referring expression generation which produces different types of expressions to refer to previously-mentioned things in a discourse. Specifically, we focus on pronominalization by zero pronouns which frequently occur in Korean. To build a generation model of referring expressions for Korean, several features are identified based on grammatical information and cost-based centering model, which are applied to various machine learning techniques. We demonstrate that our proposed features are well defined to explain pronominalization, especially pronominalization by zero pronouns in Korean, through 95 texts from three genres - Descriptive texts, News, and Short Aesop's Fables. We also show that our model significantly outperforms previous ones with a 99.9% confidence level by a T-test.

Coreference Resolution for Korean Using Random Forests (랜덤 포레스트를 이용한 한국어 상호참조 해결)

  • Jeong, Seok-Won;Choi, MaengSik;Kim, HarkSoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.535-540
    • /
    • 2016
  • Coreference resolution is to identify mentions in documents and is to group co-referred mentions in the documents. It is an essential step for natural language processing applications such as information extraction, event tracking, and question-answering. Recently, various coreference resolution models based on ML (machine learning) have been proposed, As well-known, these ML-based models need large training data that are manually annotated with coreferred mention tags. Unfortunately, we cannot find usable open data for learning ML-based models in Korean. Therefore, we propose an efficient coreference resolution model that needs less training data than other ML-based models. The proposed model identifies co-referred mentions using random forests based on sieve-guided features. In the experiments with baseball news articles, the proposed model showed a better CoNLL F1-score of 0.6678 than other ML-based models.

A Named Entity Recognition Platform Based on Semi-Automatically Built NE-annotated Corpora and KoBERT (반자동구축된 개체명 주석코퍼스 DecoNAC과 KoBERT를 이용한 개체명인식 플랫폼 DecoNERO)

  • Kim, Shin-Woo;Hwang, Chang-Hoe;Yoon, Jeong-Woo;Lee, Seong-Hyeon;Choi, Soo-Won;Nam, Jee-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.304-309
    • /
    • 2020
  • 본 연구에서는 한국어 전자사전 DECO(Dictionnaire Electronique du COreen)와 다단어(Multi-Word Expressions: MWE) 개체명을 부분 패턴으로 기술하는 부분문법그래프(Local-Grammar Graph: LGG) 프레임에 기반하여 반자동으로 개체명주석 코퍼스 DecoNAC을 구축한 후, 이를 개체명 분석에 활용하고 또한 기계학습에 필요한 도메인별 학습 데이터로 활용하는 DecoNERO 개체명인식 플랫폼을 소개하는 데에 목적을 두었다. 최근 들어 좋은 성과를 보이는 것으로 보고되고 있는 기계학습 방법론들은 다양한 도메인을 기반으로한 대규모의 학습데이터를 필요로 한다. 본 연구에서는 정교하게 설계된 개체명 사전과 다단어 개체명 시퀀스에 대한 언어자원을 바탕으로 하는 반자동으로 학습데이터를 생성하는 방법론을 제안하였다. 본 연구에서 제안된 개체명주석 코퍼스 DecoNAC 기반 접근법의 성능을 실험하기 위해 온라인 뉴스 기사 텍스트를 바탕으로 실험을 진행하였다. 이 실험에서 DecoNAC을 적용한 경우, KoBERT 모델만으로 개체명을 인식한 결과에 비해 약 7.49%의 성능향상을 기대할 수 있음을 확인하였다.

  • PDF

Competitor Extraction based on Machine Learning Methods (기계학습 기반 경쟁자 자동추출 방법)

  • Lee, Chung-Hee;Kim, Hyun-Jin;Ryu, Pum-Mo;Kim, Hyun-Ki;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.107-112
    • /
    • 2012
  • 본 논문은 일반 텍스트에 나타나는 경쟁 관계에 있는 고유명사들을 경쟁자로 자동 추출하는 방법에 대한 것으로, 규칙 기반 방법과 기계 학습 기반 방법을 모두 제안하고 비교하였다. 제안한 시스템은 뉴스 기사를 대상으로 하였고, 문장에 경쟁관계를 나타내는 명확한 정보가 있는 경우에만 추출하는 것을 목표로 하였다. 규칙기반 경쟁어 추출 시스템은 2개의 고유명사가 경쟁관계임을 나타내는 단서단어에 기반해서 경쟁어를 추출하는 시스템이며, 경쟁표현 단서단어는 620개가 수집되어 사용됐다. 기계학습 기반 경쟁어 추출시스템은 경쟁어 추출을 경쟁어 후보에 대한 경쟁여부의 바이너리 분류 문제로 접근하였다. 분류 알고리즘은 Support Vector Machines을 사용하였고, 경쟁어 주변 문맥 정보를 대표할 수 있는 언어 독립적 5개 자질에 기반해서 모델을 학습하였다. 성능평가를 위해서 이슈화되고 있는 핫키워드 54개에 대해서 623개의 경쟁어를 뉴스 기사로부터 수집해서 평가셋을 구축하였다. 비교 평가를 위해서 기준시스템으로 연관어에 기반해서 경쟁어를 추출하는 시스템을 구현하였고, Recall/Precision/F1 성능으로 0.119/0.214/0.153을 얻었다. 제안 시스템의 실험 결과로 규칙기반 시스템은 0.793/0.207/0.328 성능을 보였고, 기계 학습기반 시스템은 0.578/0.730/0.645 성능을 보였다. Recall 성능은 규칙기반 시스템이 0.793으로 가장 좋았고, 기준시스템에 비해서 67.4%의 성능 향상이 있었다. Precision과 F1 성능은 기계학습기반 시스템이 0.730과 0.645로 가장 좋았고, 기준시스템에 비해서 각각 61.6%, 49.2%의 성능향상이 있었다. 기준시스템에 비해서 제안한 시스템이 Recall, Precision, F1 성능이 모두 대폭적으로 향상되었으므로 제안한 방법이 효과적임을 알 수 있다.

  • PDF

Semantic analysis of unstructured information considering the step in progress of water quality accidents in the water supply systems (상수도시스템 수질사고의 전개양상을 고려한 비정형정보 의미분석)

  • Hong, Sungjin;Moon, Gihoon;Yang, Seong Hun;Yoo, Do Guen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.378-378
    • /
    • 2022
  • 상수도시스템의 과정 중 최종 단계인 급수단계에서 지역전반에 수질문제가 발생할 경우, 직간접적인 피해의 해결은 장기간 지속될 수 있다. 본 연구에서는 실시간 비정형정보의 빅데이터 분석을 통해 상수도시스템에서 수질사고 문제의 파급력과 2차 피해 등의 연결 관계 변화 추적을 위한 기초적 분석을 수행하였다. 과거 대규모 수질사고가 발생된 바 있는 인천광역시 유충발생 사고를 대상으로 뉴스 기사 웹크롤링 절차를 정립하고, 그 결과를 분석하였다. '인천 유충'이 최초 보도되었던 2020년 7월 13일 부터 이후 1년을 대상으로 네이버 통합검색에 의해 표출되는 뉴스기사를 웹크롤링하였으며, 프로그래밍을 통한 불용어 제거 및 관련성 검토를 통해 총 920건의 기사를 분석하였다. 수질사고의 전개양상에 따라 사고발생, 확산, 수습, 그리고 보상의 4단계로 임의 구분하여 분석하였다. 의미분석을 위한 토픽모델링 기법은 잠재 디리클레 할당(Latent Dirichlet Allocation, LDA) 방법을 적용하였으며, 긍부정 감정분석은 KNU 한국어 감성사전(KNU sentiment lexicon)을 활용하여 수행하였다. 토픽 모델링 결과, 사고 발생에서부터 확산, 수습, 보상의 단계에 맞춰 적절한 주제어의 조합에 따른 기사들이 도출되었으며, 단계별 긍부정 기사 비율역시 사고의 전개단계에 따라 적절히 나타남을 확인하였다. 제시된 수질사고 관련 비정형정보 분석 방법론과 결과는 과거 사고 사례 분석을 통한 검색 및 긍부정 키워드 확정, 키워드 발생 비율 변동(사고전과 후)에 따른 상황판단 기준설정 등에 활용이 가능하다.

  • PDF

Media-based Analysis of Gasoline Inventory with Korean Text Summarization (한국어 문서 요약 기법을 활용한 휘발유 재고량에 대한 미디어 분석)

  • Sungyeon Yoon;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.509-515
    • /
    • 2023
  • Despite the continued development of alternative energies, fuel consumption is increasing. In particular, the price of gasoline fluctuates greatly according to fluctuations in international oil prices. Gas stations adjust their gasoline inventory to respond to gasoline price fluctuations. In this study, news datasets is used to analyze the gasoline consumption patterns through fluctuations of the gasoline inventory. First, collecting news datasets with web crawling. Second, summarizing news datasets using KoBART, which summarizes the Korean text datasets. Finally, preprocessing and deriving the fluctuations factors through N-Gram Language Model and TF-IDF. Through this study, it is possible to analyze and predict gasoline consumption patterns.