Lim, Chae-Gyun;Jeong, Young-Seob;Lee, Young Jun;Oh, Kyo-Joong;Choi, Ho-Jin
한국어정보학회:학술대회논문집
/
2017.10a
/
pp.301-304
/
2017
시간정보추출 연구는 자연어 문장으로부터 대화의 문맥과 상황을 파악하고 사용자의 의도에 적합한 서비스를 제공하는데 중요한 역할을 하지만, 한국어의 고유한 언어적 특성으로 인해 한국어 텍스트에서는 개체간의 시간관계를 정확하게 인식하기 어려운 경향이 있다. 특히, 시간표현이나 사건에 대한 상대적인 시간관계는 시간 문맥을 체계적으로 파악하기 위해 중요한 개념이다. 본 논문에서는 한국어 자연어 문장에서 상대적인 시간표현과 사건 간의 관계를 추출하기 위한 LSTM(long short-term memory) 기반의 상대시간관계 추출 모델을 제안한다. 시간정보추출 연구에는 TIMEX3, EVENT, TLINK 추출의 세 가지 과정이 포함되지만, 본 논문에서는 특정 문장에 대해서 이미 추출된 TIMEX3 및 EVENT 개체를 제공하고 상대시간관계 TLINK를 추출하는 것만을 목표로 한다. 또한, 사람이 직접 태깅한 한국어 시간정보 주석 말뭉치를 대상으로 LSTM 기반 제안모델들의 상대적 시간관계 추출 성능을 비교한다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.535-540
/
2022
Out of Vocabulary(OOV) 문제는 인공신경망 기계번역(Neural Machine Translation, NMT)에서 빈번히 제기되어 왔다. 이를 해결하기 위해, 기존에는 단어를 효율적인 압축할 수 있는 Byte Pair Encoding(BPE)[1]이 대표적으로 이용되었다. 하지만 BPE는 빈도수를 기반으로 토큰화가 진행되는 결정론적 특성을 취하고 있기에, 다양한 문장에 관한 일반화된 분절 능력을 함양하기 어렵다. 이를 극복하기 위해 최근 서브 워드를 정규화하는 방법(Subword Regularization)이 제안되었다. 서브 워드 정규화는 동일한 단어 안에서 발생할 수 있는 다양한 분절 경우의 수를 고려하도록 설계되어 다수의 실험에서 우수한 성능을 보였다. 그러나 분류 작업, 특히 한국어를 대상으로 한 분류에 있어서 서브 워드 정규화를 적용한 사례는 아직까지 확인된 바가 없다. 이를 위해 본 논문에서는 서브 워드 정규화를 대표하는 두 가지 방법인 유니그램 기반 서브 워드 정규화[2]와 BPE-Dropout[3]을 이용해 한국어 분류 문제에 대한 서브 워드 정규화의 효과성을 제안한다. NMT 뿐만 아니라 분류 문제 역시 단어의 구성성 및 그 의미를 파악하는 것은 각 문장이 속하는 클래스를 결정하는데 유의미한 기여를 한다. 더불어 서브 워드 정규화는 한국어의 문장 구성 요소에 관해 폭넓은 인지능력을 함양할 수 있다. 해당 방법은 본고에서 진행한 한국어 분류 과제 실험에서 기존 BPE 대비 최대 4.7% 높은 성능을 거두었다.
Annual Conference on Human and Language Technology
/
2007.10a
/
pp.282-289
/
2007
통계를 이용한 품사 태깅에서는 자료부족 문제가 이슈가 된다. 한국어나 터키어와 같은 교착어는 어절(word)이 다수 형태소로 구성되어 있어서 자료부족 문제가 더 심각하다. 이러한 문제를 극복하고자 교착어 문장을 어절 열이 아니라 형태소의 열이라 가정한 연구도 있었으나, 어절 특성이 사라지기 때문에 파생에 의한 어절의 문법 범주 변화 등의 통계정보와 어절 간의 통계정보를 구하기 어렵다. 본 논문은 효율적인 어절 간 전이확률 계산 방법론을 고안함으로써 어절 단위의 정보를 유지하면서도 자료부족문제를 해결할 수 있는 확률 모델을 제안한다. 즉, 한국어의 형태통사적인 특성을 고려하면 앞 어절의 마지막 형태소와 함께 뒤 어절의 처음 혹은 끝 형태소-즉 두 개의 어절 간 전이 링크만으로도 어절 간 전이확률 계산 시 필요한 대부분 정보를 얻을 수 있고, 문맥에 따라 두 링크 중 하나만 필요하다는 관찰을 토대로 규칙을 이용해 두전이링크 중 하나를 선택해 전이확률 계산에 사용하는 '다이내믹 링크 모델'을 제안한다. 형태소 품사 bi-gram만을 사용하는 이 모델은 실험 말뭉치에 대해 96.60%의 정확도를 보인다. 이는 같은 말뭉치에 대해 형태소 품사 tri-gram 등의 더 많은 문맥 정보를 사용하는 다른 모델을 평가했을 때와 대등한 성능이다.
This study empirically analyzed a Korean pre-trained language models (PLMs) designed for natural language generation. The performance of two PLMs - BART and GPT - at the task of abstractive text summarization was compared. To investigate how performance depends on the characteristics of the inference data, ten different document types, containing six types of informational content and creation content, were considered. It was found that BART (which can both generate and understand natural language) performed better than GPT (which can only generate). Upon more detailed examination of the effect of inference data characteristics, the performance of GPT was found to be proportional to the length of the input text. However, even for the longest documents (with optimal GPT performance), BART still out-performed GPT, suggesting that the greatest influence on downstream performance is not the size of the training data or PLMs parameters but the structural suitability of the PLMs for the applied downstream task. The performance of different PLMs was also compared through analyzing parts of speech (POS) shares. BART's performance was inversely related to the proportion of prefixes, adjectives, adverbs and verbs but positively related to that of nouns. This result emphasizes the importance of taking the inference data's characteristics into account when fine-tuning a PLMs for its intended downstream task.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.545-550
/
2022
본 연구의 목적은 2021년 메신저 언어 200만 어절을 대상으로 수행된 맞춤법 교정 병렬 말뭉치의 설계와 구축의 쟁점을 소개하고, 교정 말뭉치의 주요 교정 및 주석 내용을 기술함으로써 맞춤법 교정 병렬 말뭉치의 특성을 분석하는 것이다. 2021년 맞춤법 교정 병렬 말뭉치의 주요 목표는 메신저 언어의 특수성을 살림과 동시에 형태소 분석이나 기계 번역 등 한국어 처리 도구가 분석할 수 있는 수준으로 교정하는 다소 상충되는 목적을 구현하는 것이었는데, 이는 교정의 수준과 병렬의 단위 설정 등 상당한 쟁점을 내포한다. 본 연구에서는 말뭉치 구축 시점에서 미처 논의하지 못한 교정 수준의 쟁점과 교정 전후의 통계적 특성을 함께 논의하고자 하며, 다음과 같은 몇 가지 하위 내용을 중심으로 논의하고자 한다.첫째, 맞춤법 교정 병렬 말뭉치의 구조 설계와 구축 절차에 대한 논의로, 2022년 초 국내 최초로 공개된 한국어 맞춤법 교정 병렬 말뭉치('모두의 말뭉치'의 일부)의 구축 과정에서 논의되어 온 말뭉치 구조 설계와 구축 절차를 논의한다. 둘째, 문장 단위로 정렬된 맞춤법 교정 말뭉치에서 관찰 가능한 띄어쓰기, 미등재어, 부호형 이모티콘 등의 메신저 언어의 몇 가지 특성을 살펴본다. 마지막으로, 2021년 메신저 맞춤법 교정 말뭉치의 구축 단계에서 미처 논의되지 못한 남은 문제들을 각각 데이터 구조 설계와 구축 차원의 주요 쟁점을 중심으로 논의한다. 특히 메신저 맞춤법 병렬 말뭉치의 주요 목표인 사전학습 언어모델의 학습데이터로서의 가치와 메신저 언어 연구의 기반 자료 구축의 관점에서 맞춤법 교정 병렬 말뭉치 구축의 의의와 향후 과제를 논의하고자 한다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06e
/
pp.89-92
/
1998
영어의 선행모음의 길이 특성이 어말 자음의 유.무성 인지에 어떤 영향을 미치는지에 관한 선행 연구의 후행연구로서 후행하는 폐쇄음의 자음적 특성은 어떠한 실마리로 적용하는지 한국어 화자들을 대상으로 한 인지실험을 통해 알아보았다. 실험결과, 한국어 모국어 화자들에게 어말 폐쇄음의 자음적 특성은 자음의 유.무성 인지에 중요한 실마리로 작용하지 못하고 있다는 사실을 알 수 있었다.
Annual Conference on Human and Language Technology
/
1993.10a
/
pp.317-328
/
1993
본 논문은 신경망과 퍼지 이론을 결합한 한국어 철자 교정기 KSCNN(Korean Spelling Corrector using Neural Network)에 대하여 기술한다. KSCNN은 퍼셉트론(perceptron) 학습을 이용한 연상 메모리(associative memory)로 구성되며 자판 배열 특성을 고려한 퍼지 멤버쉽 함수에 의해 신경망의 입력값을 정한다. 본 철자 교정기의 장점은 인지적인 방법으로 철자를 교정하기 때문에 기존의 VA나 BNA와는 달리 오류의 종류에 영향을 받지 않으며 교정된 철자나 후보자들에 대한 견인값(attraction value)을 측정하여 시스템의 신뢰도를 높일 수 있다는 데 있다. 또한, 본 논문은 실험을 통해서 퍼지 멤버쉽 함수에 의한 입력 노드의 활성화가 자판 배열특성을 고려할 수 있기 때문에 시스템의 성능을 향상시킨다는 사실을 보여준다.
The n-gram model is appropriate for languages, such as English, in which the word-order is grammatically rigid. However, it is not suitable for Korean in which the word-order is relatively free. Previous work proposed a twoply HMM that reflected the characteristics of Korean but failed to reflect word-order structures among words. In this paper, we define a new segment unit which combines two words in order to reflect the characteristic of word-order among adjacent words that appear in verbal morphemes. Moreover, we propose a two-path language model that estimates probabilities depending on the context based on the proposed segment unit. Experimental results show that the proposed two-path language model yields 25.68% perplexity improvement compared to the previous Korean language models and reduces 94.03% perplexity for the prediction of verbal morphemes where words are combined.
For Korean learners, writing is a harder part than any other areas in Korean languages. But in the future, the ability to organize and write systematically is essential for future koran languages learners to take classes, do assignments and presentations at school, and then adapt to job situations. Therefore, there is a need to devise a direction for this. In general, writing characteristics are viewed in many ways, including writing productivity, writing complexity, and writing errors. Accordingly, the study provided drawings and A4 paper for Vietnamese Korean learners, Chinese Korean learners, and Korean university students, before writing freely. Based on the their writing results, we looked at syntax factors (total C-units, total number of words), syntax complexity (number of words per C-unit and clause density), and writing errors (postposition, spell errors, and connective suffix, space errors) According to the study, Vietnamese and Chinese Korean language learners showed significantly lower syntax productivity and complexity than Korean university students, and showed more writing errors than Korean students in postposition and clause density. Based on the results of the study, we discussed writing guidelines for Korean languages learners. However, this study did not validate the differences in writing characteristics according to the Korean language level and length of residences for the study subjects. Therefore, it is necessary to consider this in future research.
The purpose of this study is to identify the characteristics and types of errors in the conceptual image of Korean language learners according to the types of terms in mathematics that are the basis for solving mathematical word problems, and to prepare basic data for effective teaching and learning methods in solving the word problems of Korean language learners. To do this, a case study was conducted targeting four Korean language learners to analyze the specific conceptual images of terms registered in curriculum and terms that were not registered in curriculum but used in textbooks. As a result of this study, first, it is necessary to guide Korean language learners by using sufficient visualization material so that they can form appropriate conceptual definitions for terms in school mathematics. Second, it is necessary to understand the specific relationship between the language used in the home of Korean language learners and the conceptual image of terms in school mathematics. Third, it is necessary to pay attention to the passive term, which has difficulty in understanding the meaning rather than the active term. Fourth, even for Korean language learners who do not have difficulties in daily communication, it is necessary to instruct them on everyday language that are not registered in the curriculum but used in math textbooks. Fifth, terms in school mathematics should be taught in consideration of the types of errors that reflect the linguistic characteristics of Korean language learners shown in the explanation of terms. This recognition is expected to be helpful in teaching word problem solving for Korean language learners with different linguistic backgrounds.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.