• Title/Summary/Keyword: 한국어의 특성

Search Result 759, Processing Time 0.024 seconds

Design of LSTM-based Model for Extracting Relative Temporal Relations for Korean Texts (한국어 상대시간관계 추출을 위한 LSTM 기반 모델 설계)

  • Lim, Chae-Gyun;Jeong, Young-Seob;Lee, Young Jun;Oh, Kyo-Joong;Choi, Ho-Jin
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.301-304
    • /
    • 2017
  • 시간정보추출 연구는 자연어 문장으로부터 대화의 문맥과 상황을 파악하고 사용자의 의도에 적합한 서비스를 제공하는데 중요한 역할을 하지만, 한국어의 고유한 언어적 특성으로 인해 한국어 텍스트에서는 개체간의 시간관계를 정확하게 인식하기 어려운 경향이 있다. 특히, 시간표현이나 사건에 대한 상대적인 시간관계는 시간 문맥을 체계적으로 파악하기 위해 중요한 개념이다. 본 논문에서는 한국어 자연어 문장에서 상대적인 시간표현과 사건 간의 관계를 추출하기 위한 LSTM(long short-term memory) 기반의 상대시간관계 추출 모델을 제안한다. 시간정보추출 연구에는 TIMEX3, EVENT, TLINK 추출의 세 가지 과정이 포함되지만, 본 논문에서는 특정 문장에 대해서 이미 추출된 TIMEX3 및 EVENT 개체를 제공하고 상대시간관계 TLINK를 추출하는 것만을 목표로 한다. 또한, 사람이 직접 태깅한 한국어 시간정보 주석 말뭉치를 대상으로 LSTM 기반 제안모델들의 상대적 시간관계 추출 성능을 비교한다.

  • PDF

Efficient Subword Segmentation for Korean Language Classification (한국어 분류를 위한 효율적인 서브 워드 분절)

  • Hyunjin Seo;Jeongjae Nam;Minseok Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.535-540
    • /
    • 2022
  • Out of Vocabulary(OOV) 문제는 인공신경망 기계번역(Neural Machine Translation, NMT)에서 빈번히 제기되어 왔다. 이를 해결하기 위해, 기존에는 단어를 효율적인 압축할 수 있는 Byte Pair Encoding(BPE)[1]이 대표적으로 이용되었다. 하지만 BPE는 빈도수를 기반으로 토큰화가 진행되는 결정론적 특성을 취하고 있기에, 다양한 문장에 관한 일반화된 분절 능력을 함양하기 어렵다. 이를 극복하기 위해 최근 서브 워드를 정규화하는 방법(Subword Regularization)이 제안되었다. 서브 워드 정규화는 동일한 단어 안에서 발생할 수 있는 다양한 분절 경우의 수를 고려하도록 설계되어 다수의 실험에서 우수한 성능을 보였다. 그러나 분류 작업, 특히 한국어를 대상으로 한 분류에 있어서 서브 워드 정규화를 적용한 사례는 아직까지 확인된 바가 없다. 이를 위해 본 논문에서는 서브 워드 정규화를 대표하는 두 가지 방법인 유니그램 기반 서브 워드 정규화[2]와 BPE-Dropout[3]을 이용해 한국어 분류 문제에 대한 서브 워드 정규화의 효과성을 제안한다. NMT 뿐만 아니라 분류 문제 역시 단어의 구성성 및 그 의미를 파악하는 것은 각 문장이 속하는 클래스를 결정하는데 유의미한 기여를 한다. 더불어 서브 워드 정규화는 한국어의 문장 구성 요소에 관해 폭넓은 인지능력을 함양할 수 있다. 해당 방법은 본고에서 진행한 한국어 분류 과제 실험에서 기존 BPE 대비 최대 4.7% 높은 성능을 거두었다.

  • PDF

A Dynamic Link Model for Korean POS-Tagging (한국어 품사 태깅을 위한 다이내믹 링크 모델)

  • Hwang, Myeong-Jin;Kang, Mi-Young;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2007.10a
    • /
    • pp.282-289
    • /
    • 2007
  • 통계를 이용한 품사 태깅에서는 자료부족 문제가 이슈가 된다. 한국어나 터키어와 같은 교착어는 어절(word)이 다수 형태소로 구성되어 있어서 자료부족 문제가 더 심각하다. 이러한 문제를 극복하고자 교착어 문장을 어절 열이 아니라 형태소의 열이라 가정한 연구도 있었으나, 어절 특성이 사라지기 때문에 파생에 의한 어절의 문법 범주 변화 등의 통계정보와 어절 간의 통계정보를 구하기 어렵다. 본 논문은 효율적인 어절 간 전이확률 계산 방법론을 고안함으로써 어절 단위의 정보를 유지하면서도 자료부족문제를 해결할 수 있는 확률 모델을 제안한다. 즉, 한국어의 형태통사적인 특성을 고려하면 앞 어절의 마지막 형태소와 함께 뒤 어절의 처음 혹은 끝 형태소-즉 두 개의 어절 간 전이 링크만으로도 어절 간 전이확률 계산 시 필요한 대부분 정보를 얻을 수 있고, 문맥에 따라 두 링크 중 하나만 필요하다는 관찰을 토대로 규칙을 이용해 두전이링크 중 하나를 선택해 전이확률 계산에 사용하는 '다이내믹 링크 모델'을 제안한다. 형태소 품사 bi-gram만을 사용하는 이 모델은 실험 말뭉치에 대해 96.60%의 정확도를 보인다. 이는 같은 말뭉치에 대해 형태소 품사 tri-gram 등의 더 많은 문맥 정보를 사용하는 다른 모델을 평가했을 때와 대등한 성능이다.

  • PDF

A Study of Pre-trained Language Models for Korean Language Generation (한국어 자연어생성에 적합한 사전훈련 언어모델 특성 연구)

  • Song, Minchae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.309-328
    • /
    • 2022
  • This study empirically analyzed a Korean pre-trained language models (PLMs) designed for natural language generation. The performance of two PLMs - BART and GPT - at the task of abstractive text summarization was compared. To investigate how performance depends on the characteristics of the inference data, ten different document types, containing six types of informational content and creation content, were considered. It was found that BART (which can both generate and understand natural language) performed better than GPT (which can only generate). Upon more detailed examination of the effect of inference data characteristics, the performance of GPT was found to be proportional to the length of the input text. However, even for the longest documents (with optimal GPT performance), BART still out-performed GPT, suggesting that the greatest influence on downstream performance is not the size of the training data or PLMs parameters but the structural suitability of the PLMs for the applied downstream task. The performance of different PLMs was also compared through analyzing parts of speech (POS) shares. BART's performance was inversely related to the proportion of prefixes, adjectives, adverbs and verbs but positively related to that of nouns. This result emphasizes the importance of taking the inference data's characteristics into account when fine-tuning a PLMs for its intended downstream task.

Construction of a Parallel Corpus for Instant Messenger Spelling Correction and Related Issues (메신저 맞춤법 교정 병렬 말뭉치의 구축과 쟁점)

  • HUANG YINXIA;Jin-san An;Kil-im Nam
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.545-550
    • /
    • 2022
  • 본 연구의 목적은 2021년 메신저 언어 200만 어절을 대상으로 수행된 맞춤법 교정 병렬 말뭉치의 설계와 구축의 쟁점을 소개하고, 교정 말뭉치의 주요 교정 및 주석 내용을 기술함으로써 맞춤법 교정 병렬 말뭉치의 특성을 분석하는 것이다. 2021년 맞춤법 교정 병렬 말뭉치의 주요 목표는 메신저 언어의 특수성을 살림과 동시에 형태소 분석이나 기계 번역 등 한국어 처리 도구가 분석할 수 있는 수준으로 교정하는 다소 상충되는 목적을 구현하는 것이었는데, 이는 교정의 수준과 병렬의 단위 설정 등 상당한 쟁점을 내포한다. 본 연구에서는 말뭉치 구축 시점에서 미처 논의하지 못한 교정 수준의 쟁점과 교정 전후의 통계적 특성을 함께 논의하고자 하며, 다음과 같은 몇 가지 하위 내용을 중심으로 논의하고자 한다.첫째, 맞춤법 교정 병렬 말뭉치의 구조 설계와 구축 절차에 대한 논의로, 2022년 초 국내 최초로 공개된 한국어 맞춤법 교정 병렬 말뭉치('모두의 말뭉치'의 일부)의 구축 과정에서 논의되어 온 말뭉치 구조 설계와 구축 절차를 논의한다. 둘째, 문장 단위로 정렬된 맞춤법 교정 말뭉치에서 관찰 가능한 띄어쓰기, 미등재어, 부호형 이모티콘 등의 메신저 언어의 몇 가지 특성을 살펴본다. 마지막으로, 2021년 메신저 맞춤법 교정 말뭉치의 구축 단계에서 미처 논의되지 못한 남은 문제들을 각각 데이터 구조 설계와 구축 차원의 주요 쟁점을 중심으로 논의한다. 특히 메신저 맞춤법 병렬 말뭉치의 주요 목표인 사전학습 언어모델의 학습데이터로서의 가치와 메신저 언어 연구의 기반 자료 구축의 관점에서 맞춤법 교정 병렬 말뭉치 구축의 의의와 향후 과제를 논의하고자 한다.

  • PDF

On the Perceptual Cues to Voicing of English Word-Final Stops -Focusing on the consonantal features- (영어 어말 폐쇄음의 유.무성 인지 실마리에 관한 연구 -폐쇄음의 자음적 특징을 중심으로 -)

  • 고현주
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.89-92
    • /
    • 1998
  • 영어의 선행모음의 길이 특성이 어말 자음의 유.무성 인지에 어떤 영향을 미치는지에 관한 선행 연구의 후행연구로서 후행하는 폐쇄음의 자음적 특성은 어떠한 실마리로 적용하는지 한국어 화자들을 대상으로 한 인지실험을 통해 알아보았다. 실험결과, 한국어 모국어 화자들에게 어말 폐쇄음의 자음적 특성은 자음의 유.무성 인지에 중요한 실마리로 작용하지 못하고 있다는 사실을 알 수 있었다.

  • PDF

An Implementation of Neuro-Fuzzy Korean Spelling Corrector Using Keyboard Arrangement Characteristics (자판 배열 특성을 이용한 Neuro-Fuzzy 한국어 철자 교정기의 구현)

  • Jung, Han-Min;Lee, Geun-Bae;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.317-328
    • /
    • 1993
  • 본 논문은 신경망과 퍼지 이론을 결합한 한국어 철자 교정기 KSCNN(Korean Spelling Corrector using Neural Network)에 대하여 기술한다. KSCNN은 퍼셉트론(perceptron) 학습을 이용한 연상 메모리(associative memory)로 구성되며 자판 배열 특성을 고려한 퍼지 멤버쉽 함수에 의해 신경망의 입력값을 정한다. 본 철자 교정기의 장점은 인지적인 방법으로 철자를 교정하기 때문에 기존의 VA나 BNA와는 달리 오류의 종류에 영향을 받지 않으며 교정된 철자나 후보자들에 대한 견인값(attraction value)을 측정하여 시스템의 신뢰도를 높일 수 있다는 데 있다. 또한, 본 논문은 실험을 통해서 퍼지 멤버쉽 함수에 의한 입력 노드의 활성화가 자판 배열특성을 고려할 수 있기 때문에 시스템의 성능을 향상시킨다는 사실을 보여준다.

  • PDF

Two-Path Language Modeling Considering Word Order Structure of Korean (한국어의 어순 구조를 고려한 Two-Path 언어모델링)

  • Shin, Joong-Hwi;Park, Jae-Hyun;Lee, Jung-Tae;Rim, Hae-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.8
    • /
    • pp.435-442
    • /
    • 2008
  • The n-gram model is appropriate for languages, such as English, in which the word-order is grammatically rigid. However, it is not suitable for Korean in which the word-order is relatively free. Previous work proposed a twoply HMM that reflected the characteristics of Korean but failed to reflect word-order structures among words. In this paper, we define a new segment unit which combines two words in order to reflect the characteristic of word-order among adjacent words that appear in verbal morphemes. Moreover, we propose a two-path language model that estimates probabilities depending on the context based on the proposed segment unit. Experimental results show that the proposed two-path language model yields 25.68% perplexity improvement compared to the previous Korean language models and reduces 94.03% perplexity for the prediction of verbal morphemes where words are combined.

A Composite Study on the Writing Characteristics of Korean Learners - Focused on Syntax Production, Syntax Complexity and Syntax Errors (한국어 학습자의 쓰기 특성에 관한 융복합적 연구 - 구문산출성, 구문복잡성 및 구문오류를 중심으로)

  • Lee, MI Kyung;Noh, Byungho
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.315-324
    • /
    • 2018
  • For Korean learners, writing is a harder part than any other areas in Korean languages. But in the future, the ability to organize and write systematically is essential for future koran languages learners to take classes, do assignments and presentations at school, and then adapt to job situations. Therefore, there is a need to devise a direction for this. In general, writing characteristics are viewed in many ways, including writing productivity, writing complexity, and writing errors. Accordingly, the study provided drawings and A4 paper for Vietnamese Korean learners, Chinese Korean learners, and Korean university students, before writing freely. Based on the their writing results, we looked at syntax factors (total C-units, total number of words), syntax complexity (number of words per C-unit and clause density), and writing errors (postposition, spell errors, and connective suffix, space errors) According to the study, Vietnamese and Chinese Korean language learners showed significantly lower syntax productivity and complexity than Korean university students, and showed more writing errors than Korean students in postposition and clause density. Based on the results of the study, we discussed writing guidelines for Korean languages learners. However, this study did not validate the differences in writing characteristics according to the Korean language level and length of residences for the study subjects. Therefore, it is necessary to consider this in future research.

An Analysis of Korean Language Learners' Understanding According to the Types of Terms in School Mathematics (수학과 용어 유형에 따른 한국어학습자의 이해 분석)

  • Do, Joowon;Chang, Hyewon
    • Communications of Mathematical Education
    • /
    • v.36 no.3
    • /
    • pp.335-353
    • /
    • 2022
  • The purpose of this study is to identify the characteristics and types of errors in the conceptual image of Korean language learners according to the types of terms in mathematics that are the basis for solving mathematical word problems, and to prepare basic data for effective teaching and learning methods in solving the word problems of Korean language learners. To do this, a case study was conducted targeting four Korean language learners to analyze the specific conceptual images of terms registered in curriculum and terms that were not registered in curriculum but used in textbooks. As a result of this study, first, it is necessary to guide Korean language learners by using sufficient visualization material so that they can form appropriate conceptual definitions for terms in school mathematics. Second, it is necessary to understand the specific relationship between the language used in the home of Korean language learners and the conceptual image of terms in school mathematics. Third, it is necessary to pay attention to the passive term, which has difficulty in understanding the meaning rather than the active term. Fourth, even for Korean language learners who do not have difficulties in daily communication, it is necessary to instruct them on everyday language that are not registered in the curriculum but used in math textbooks. Fifth, terms in school mathematics should be taught in consideration of the types of errors that reflect the linguistic characteristics of Korean language learners shown in the explanation of terms. This recognition is expected to be helpful in teaching word problem solving for Korean language learners with different linguistic backgrounds.