• Title/Summary/Keyword: 한계 자율 주행

Search Result 80, Processing Time 0.021 seconds

The Tunnel Lane Positioning System of a Autonomous Vehicle in the LED Lighting (LED 조명을 이용한 자율주행차용 터널 차로측위 시스템)

  • Jeong, Jae hoon;Lee, Dong heon;Byun, Gi-sig;Cho, Hyung rae;Cho, Yoon ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.186-195
    • /
    • 2017
  • Recently, autonomous vehicles have been studied actively. There are various technologies such as ITS, Connected Car, V2X and ADAS in order to realize such autonomous driving. Among these technologies, it is particularly important to recognize where the vehicle is on the road in order to change the lane and drive to the destination. Generally, it is done through GPS and camera image processing. However, there are limitations on the reliability of the positioning due to shaded areas such as tunnels in the case of GPS, and there are limitations in recognition and positioning according to the state of the road lane and the surrounding environment when performing the camera image processing. In this paper, we propose that LED lights should be installed for autonomous vehicles in tunnels which are shaded area of the GPS. In this paper, we show that it is possible to measure the position of the current lane of the autonomous vehicle by analyzing the color temperature after constructing the tunnel LED lighting simulation environment which illuminates light of different color temperature by lane. Based on the above, this paper proposes a lane positioning technique using tunnel LED lights.

Design of Algorithm for Collision Avoidance with VRU Using V2X Information (V2X 정보를 활용한 VRU 충돌 회피 알고리즘 개발)

  • Jang, Seono;Lee, Sangyeop;Park, Kihong;Shin, Jaekon;Eom, Sungwook;Cho, Sungwoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.240-257
    • /
    • 2022
  • Autonomous vehicles use various local sensors such as camera, radar, and lidar to perceive the surrounding environment. However, it is difficult to predict the movement of vulnerable road users using only local sensors that are subject to limits in cognitive range. This is true especially when these users are blocked from view by obstacles. Hence, this paper developed an algorithm for collision avoidance with VRU using V2X information. The main purpose of this collision avoidance system is to overcome the limitations of the local sensors. The algorithm first evaluates the risk of collision, based on the current driving condition and the V2X information of the VRU. Subsequently, the algorithm takes one of four evasive actions; steering, braking, steering after braking, and braking after steering. A simulation was performed under various conditions. The results of the simulation confirmed that the algorithm could significantly improve the performance of the collision avoidance system while securing vehicle stability during evasive maneuvers.

Research on the estimation of ship size information based on a ground-based radar using AI techniques (인공지능 기법을 이용한 육상 레이더 기반 선박 크기 정보 추정에 관한 연구)

  • JeongSu Lee;Jungwook Han;Kyurin Park;Hye-Jin Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.76-76
    • /
    • 2023
  • 최근 자율주행과 관련한 시장의 관심은 기존 자동차 자율주행에서 선박 자율운항으로 자연스럽게 이동하고 있다. 이에 인공지능 및 빅데이터 등과 같은 최근 기술을 선박 자율주행에 적용하는 자율운항선박(MASS: Maritime Autonomous Surface Ship) 개발이 활발히 진행되고 있으며, 레이더 및 카메라 등과 같은 센서 정보를 선박 자율운항에 적용하여 다양한 선박 운동 및 정보를 획득하는 연구 기술이 집중되고 있다. 이러한 경향에 따라 IMO(International Maritime Organization)과 같은 국제기구에서도 자율운항선박 표준화 본격 논의로 기술표준 선점 경쟁에 참여하고 있다. 이 중 연안 자율운항선박 개발은 IMO에서 주관하는 무인화 핵심기술로 여겨지고 있어, 기존 대양 항해 기술과 함께 연안 항해에 대한 기술 개발의 중요성이 높아지고 있다. 특히 항만 인근 해역에서는 다수의 선박이 입출항함으로 인해 해상에서의 안전과 물류의 효율화가 요구되기 때문에 고도화된 자율운항 기술개발이 필요하다. 하지만 자율운항선박에서의 상황인식 기술은 탑재된 센서의 제한된 시야각 및 기상조건에 따른 인식률이 떨어지는 문제가 생긴다. 이러한 기술적 한계를 극복하기 위해 육상에 설치된 레이더를 활용하여 선박을 탐지할 수 있는 기술이 필요하다. 본 연구에서는 고해상도 육상 레이더를 기반하여 얻어진 레이더 화면상의 물표 정보를 이용해 인공지능 기법에 활용하기 위한 라벨링 자동 생성 방법에 대해 소개한다. 얻어진 물표 정보에 인공지능 기법을 적용하여 선박 길이 정보를 추정하는 기술에 대해 소개한다.

  • PDF

Development of unmanned reconnaissance system for wire fence (철조망 경계 및 정찰 로봇 시스템 개발)

  • Su-Hyung You;Hyun-Gyu Choo;Do-Hyun Jung;Hyeon-Ji Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.866-867
    • /
    • 2023
  • 기존의 무인 경로 로봇 시스템은 지형 제약과 높은 가격으로 인해 범용성에 한계를 갖는다. 이러한 한계를 극복하기 위해 철조망 위를 자율 주행하는 로봇 시스템(FPS, Fence Patrol System)을 소개하고, 하드웨어와 소프트웨어 측면에서 FPS 의 시스템 작동 원리를 설명한다. FPS 는 철조망 위에서 진동이 감지된 지역으로 이동해 객체를 탐지하고 추적하면서 관리자에게 전송한다. FPS 는 다양한 폭을 갖는 철조망 위에서 주행이 가능하고 완만한 곡률이 있는 철조망도 주행할 수 있도록 설계되었다. 이를 통해 지상 무인 경계 시스템의 한계를 해결하고 다양한 분야에 활용될 것으로 기대한다.

Development of the Smart Autonomous Moving Air Purifier System (스마트 자율주행 공기청정기 시스템 개발)

  • Lim, Ah-Yeon;Shin, Hyo-Jin;Jeong, Eui-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.109-114
    • /
    • 2022
  • Recently, since fine dust has become a serious social problem, air purifiers are in the spotlight as a countermeasure against this. Therefore, in this paper, we conducted R&D on the Smart Autonomous Moving Air Purifier System. The developed Smart Autonomous Moving Air Purifier can improve the limitations of the standard used area of existing air purifiers and perform an air purification function efficiently. In addition, we developed App and Web-based programs together for convenient use of Smart Autonomous Moving Air Purifier. Easily operate three air purification modes (Selection mode, Autonomous highest zone mode, Autonomous instant purification mode) through the App and conveniently monitor statistical values (Recent data, Total data, Warning) anywhere through the Web. And, we showed through test that the proposed Smart Autonomous Moving Air Purifier is more efficient than existing air purifiers.

Predicting Accident Vulnerable Situation and Extracting Scenarios of Automated Vehicleusing Vision Transformer Method Based on Vision Data (Vision Transformer를 활용한 비전 데이터 기반 자율주행자동차 사고 취약상황 예측 및 시나리오 도출)

  • Lee, Woo seop;Kang, Min hee;Yoon, Young;Hwang, Kee yeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.233-252
    • /
    • 2022
  • Recently, various studies have been conducted to improve automated vehicle (AV) safety for AVs commercialization. In particular, the scenario method is directly related to essential safety assessments. However, the existing scenario do not have objectivity and explanability due to lack of data and experts' interventions. Therefore, this paper presents the AVs safety assessment extended scenario using real traffic accident data and vision transformer (ViT), which is explainable artificial intelligence (XAI). The optimal ViT showed 94% accuracy, and the scenario was presented with Attention Map. This work provides a new framework for an AVs safety assessment method to alleviate the lack of existing scenarios.

Method of Multiple Scenario Transformation and Simulation Based Evaluation for Automated Vehicle Assessment (자율주행자동차 평가를 위한 다중 시나리오 변환과 시뮬레이션 기반 평가 방법)

  • Donghyo Kang;Inyoung Kim;Seong-Woo Cho;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.230-245
    • /
    • 2023
  • The importance of evaluating the safety of Automated Vehicles (AV) is increasing with the advances in autonomous driving technology. Accordingly, an evaluation scenario that defines in advance the situations AV may face while driving is being used to conduct efficient stability evaluation. On the other hand, the single scenarios currently used in conventional evaluations address limited situations within short segments. As a result, there are limitations in evaluating continuous situations that occur on real roads. Therefore, this study developed a set of multiple scenarios that allow for continuous evaluation across entire sections of roads with diverse geometric structures to assess the safety of AV. In particular, the conditions for connecting individual scenarios were defined, and a methodology was proposed for developing concrete multiple scenarios based on the scenario evaluation procedure of the PEGASUS project. Furthermore, a simulation was performed to validate the practicality of these multiple scenarios.

Motion Planning of Autonomous Racing Vehicles for Mimicking Human Driver Characteristics (운전자 주행 특성 모사를 위한 트랙 한계 자율 주행 차량의 거동 계획 알고리즘)

  • Changhee Kim;Kyongsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.1
    • /
    • pp.6-11
    • /
    • 2024
  • This paper presents a motion planning algorithm of autonomous racing vehicles for mimicking the characteristics of a human driver. Time optimal maneuver of a race car has been actively studied as a major research area over the past decades. Although the time optimization problem yields a single time series solution of minimum time maneuver inputs for the vehicle, human drivers achieve similar lap times while taking various racing lines and velocity profiles. In order to model the characteristics of a specific driver and reproduce the motion, a stochastic motion planning framework based on kernelized motion primitive is introduced. The proposed framework imitates the behavior of the generated reference motion, which is based on a small number of human demonstration laps along the racetrack using Gaussian mixture model and Gaussian mixture regression. The mean and covariance of the racing line and velocity profile mimicking the driver are obtained by accumulating the outputs tested at equidistantly sampled input points. The results confirmed that the obtained lateral and longitudinal motion simulates the driver's driving characteristics, which are feasible for actual vehicle test environments.

Development of Evaluation Indicators for Optimizing Mixed Traffic Flow Using Complexed Multi-Criteria Decision Approaches (다기준 복합 가중치 결정 기반 혼재 교통류 최적화 평가지표 개발)

  • Donghyeok Park;Nuri Park;Donghee Oh;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.157-172
    • /
    • 2024
  • Autonomous driving technology, when commercialized, has the potential to improve the safety, mobility, and environmental performance of transportation networks. However, safe autonomous driving may be hindered by poor sensor performance and limitations in long-distance detection. Therefore, cooperative autonomous driving that can supplement information collected from surrounding vehicles and infrastructure is essential. In addition, since HDVs, AVs, and CAVs have different ranges of perceivable information and different response protocols, countermeasures are needed for mixed traffic that occur during the transition period of autonomous driving technology. There is a lack of research on traffic flow optimization that considers the penetration rate of autonomous vehicles and the different characteristics of each road segment. The objective of this study is to develop weights based on safety, operational, and environmental factors for each infrastructure control use case and autonomous vehicle MPR. To develop an integrated evaluation index, infra-guidance AHP and hybrid AHP weights were combined. Based on the results of this study, it can be used to give right of way to each vehicle to optimize mixed traffic.

Study on Automated Error Detection Method for Enhancing High Definition Map (정밀도로지도 레이어의 품질향상을 위한 자동오류 판독 연구)

  • Hong, Song Pyo;Oh, Jong Min;Song, Yong Hyun;Shin, Young Min;Sung, Dong Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.391-399
    • /
    • 2020
  • Autonomous driving can be limited by only using sensors if the sensor is blocked by sudden changes in surrounding environments or large features such as heavy vehicles. In order to overcome the limitations, the precise road-map has been used additionally. In korea, the NGII (National Geographic Information Institute) produces and supplies high definition map for autonomous vehicles. Accordingly, in this study, errors occurring in the process of e data editing and dtructured esditing of high definition map are systematically typed providing by the National Geographic Information Institute. In addition, by presenting the error search process and solution for each situation, we conducted a study to quickly correct errors in high definition map, and largely classify the error items for shape integrity, spatial relationship, and reference relationship, and examine them in detail. The method was derived.