• Title/Summary/Keyword: 한계하중방법

Search Result 204, Processing Time 0.024 seconds

System Reliability-Based Load-Carrying Capacity Evaluation of Steel Cable-Stayed Bridges (체계신뢰성방법에 기초한 강사장교의 내하력평가)

  • 조효남;임종권;박경훈
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.341-350
    • /
    • 1998
  • 본 논문은 교통하중에 대한 강사장교의 체계신뢰성에 기초한 체계적이며 실용적인 내하력평가 및 여용성평가 모형을 제안하였다. 고량 주형과 주탑의 조합상관 한계상태에 기초한 내하력평가를 위하여 개선된 조합상관식에 기초한 LRFR(Load and Resistance Factor Rating) 방법과 신뢰성에 기초한 시스템수준의 평가를 위해서 목표체계신뢰성지수의 항으로 표현되는 등가시스템저항강도에 의한 접근방법을 제안하였다. 또한 시스템의 여용성을 정의하기 위해서 체계신뢰성해석의 결과와 내하력평가 결과를 이용한 실제적인 시스템여용성 평가방법을 적용하였다. 제안한 체계신뢰성에 기초한 평가방법은 기존의 요소신뢰성 방법에 비해 구조물의 여용성을 충분히 반영하는 상당히 합리적이며 실제적인 결과를 보여주는 실용적인 방법으로 판단된다.

  • PDF

Assesment of Load and Resistance Factored Design Value for PHC Driven Pile (PHC 항타말뚝의 하중저항계수 산정)

  • Park, Jong-Bae;Park, Yong-Boo;Lee, Bum-Sik;Kim, Sang-Yeon
    • Land and Housing Review
    • /
    • v.4 no.3
    • /
    • pp.279-286
    • /
    • 2013
  • Driving a prefabricated pile is the efficient construction method with low cost and excellent bearing capacity charateristics. But pile drinving method has often been changed to bored pile method with mechanical boring due to the unexpected problems occurred in the various domestic ground condition with landfill. So, pile driving method has more uncertainty than the Bored Pile method. This paper proposed LRFD design value which is one of limit states design method for the PHC driven pile used as building foundation to guarantee the reliable design with reduced uncertainty. This paper analysed 221 dynamic load test results(E.O.I.D : 93, Resrike : 128) and the different methods of estimating bearing design(Meyerhof method & SPT-CPT conversion method), and proposed LRFD value for each design reliability Index 2.33 and 3.0 for PHC driven pile. LRFD value of PHC driven pile represents 0.43~0.55 for Meyerhof method and 0.40~0.49 for SPT-CPT conversion method according to the deign reliability index.

Incremental Model Formulation of Creep under Time-varying Stress History (시간이력 하중을 받는 콘크리트의 점증적 크리프 모델)

  • Park, Yeong-Seong;Shin, Dong-Hun;Lee, Yong-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.755-761
    • /
    • 2014
  • Internal or external restraint of concrete strain due to drying shrinkage and creep in concrete structures causes mechanical strain and becomes a source of persistent change in creep-causing stress conditions. Mathematical modeling to incorporate the persistent change of creep-inducing stress is generally achieved with consideration of the ages of concrete and concrete properties at the times of loadings, and stress history. This paper presents an incremental format of creep model based on parallel creep concept to depict the creep under time-varying stress history in developing creep strain. Laboratory experiments are carried out to validate the performance of the presented creep model. Typical creep phenomena are addressed through the comparisons between the measured and predicted creep strains.

Nonlinar Analysis of Reinforced Concrete Frames Considering The Strain-Softening of Concrete (변형연화현상을 고려한 철근콘크리트 골조의 비선형 해석)

  • 김진근;이태규
    • Magazine of the Korea Concrete Institute
    • /
    • v.1 no.1
    • /
    • pp.105-114
    • /
    • 1989
  • 휨을 받는 철근콘크리트 부재 단면의 연화현상은 구조물의 파괴하중 해석시 중요한 인자로 작용한다. 일반적인 탄-소성 이론에 근거한 소성한계해석법을 사용할 경우 철골 구조물에는 적합하지만 철근콘크리트 구조물에는 최대하중 이후의 연화현상으로 인하여 이 이론은 부적합하게 된다. 따라서 본 논문의 주목적은 변위제어방법을 사용하여 철근콘크리트 구조물이 파괴될 때까지의 완전한 거동을 이끌어 내는 것이다. 프로그램을 사용한 계산결과를 보다 빠르고 경제적으로 이끌어 내기 위하여 단면의 성질인 모멘트-곡률, 축력-축\ulcorner향 변형률, 그리고 전단력 변형률 곡선 등을 여러개의 직선적으로 단순화한 모델식을 사용하여 해석한다. 또한 연화현상을 고려한 유한요소의 해석결과는 사용된 요소의 크기에 따라 결과가 매우 다르게 나타나기 때문에 이를 방지하기 위하여 파괴에너지 개념을 도입하여 모멘트-곡률 곡선을 보정하여 구조계산에 적용시킨다. 이와 같이 단면을 층으로 나누어 해석하지 않고 직접 단면의 성질을 나타내는 곡선들을 적용한 본 프로그램으로 보와 골조를 해석한 결과는 실제적인 실험결과와 비교하였을 경우 거의 일치하게 나타난다.

Running Safety of a Long Span Suspension Bridge under the Passage of a High Speed Train (장경간 현수교의 고속열차 주행 시 운행한계기준 검토)

  • Kim, Sung-Il;Kim, Hyun-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.477-480
    • /
    • 2011
  • 장경간 케이블 교량은 과도한 변위 발생 등의 이유로 엄격한 안전성 및 사용성이 요구되는 철도교량에서는 제한적으로 적용되고 있다. 즉, 철도교량으로서 요구되는 주행안전성과 승차감을 만족하기 위해서는 면밀한 분석이 필요하다. 본 연구에서는 교량/열차 상호작용 해석을 수행하여 열차에서의 응답을 통해 교량 상을 주행하는 열차의 주행안전성 및 승차감을 직접적으로 평가하고자 하였다. 즉, 중앙경간 300m의 현수교를 주행하는 KTX 열차에 대하여 열차 내부의 가속도와 윤중감소율을 구해 평가하는 방법을 취하였다. 또한, 이동 열차하중과 지진하중이 동시에 작용할 경우를 고려한 교량/열차/지진 상호작용해석을 수행하여 지진 시의 응답을 평가하였다.

  • PDF

A Study on the Characterization of Electroless and Electro Plated Nickel Bumps Fabricated for ACF Application (무전해 및 전해 도금법으로 제작된 ACF 접합용 니켈 범프 특성에 관한 연구)

  • Jin, Kyoung-Sun;Lee, Won-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.21-27
    • /
    • 2007
  • Nickel bumps for ACF(anisotropic conductive film) flip chip application were fabricated by electroless and electro plating and their mechanical properties and impact reliability were examined through the compressive test, bump shear test and drop test. Stress-displacement curves were obtained from the load-displacement data in the compressive test using nano-indenter. Electroplated nickel bumps showed much lower elastic stress limits (70MPa) and elastic moduli ($7.8{\times}10^{-4}MPa/nm$) than electroless plated nickel bumps ($600-800MPa,\;9.7{\times}10^{-3}MPa/nm$). In the bump shear test, the electroless plated nickel bumps were deformed little by the test blade and bounded off from the pad at a low shear load, whereas the electroplated nickel bumps allowed large amount of plastic deformation and higher shear load. Both electroless and electro plated nickel bumps bonded by ACF flip chip method showed high impact reliability in the drop impact test.

  • PDF

Development of Equations for Static Design Loads of Sphere Type LNG Tank with Cylindrical Extension (원통 확장부를 갖는 구형 LNG 탱크의 정적 설계하중 산출식 개발)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5060-5066
    • /
    • 2015
  • The number of shop needed for the fabrication of sphere type LNG tank is proportional to that of the tank radius to be constructed. Due to limitation of facility investment including building sites, it is practically difficult to fabricate various size tanks of perfectly spherical shape in the yards. The efficient method to increase cargo tank capacity is to extend vertically the conventional sphere type LNG tank by inserting a cylindrical shell structure. In this study, equations for static design loads are developed for sphere type LNG tank with central extension. The results of this study will be combined with dynamic design loads to build the simplified analysis method which enable the precise initial estimate instead of time consuming finite element analysis.

Bearing Capacity Evaluation of the Drilled Shaft Using Small Scale Model Test (축소모형말뚝을 이용한 현장타설말뚝의 지지력 평가)

  • 조천환;김홍묵;김웅규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.117-126
    • /
    • 2004
  • Recently, the top & down method with drilled shafts as a foundation of high rise building is often adopted for the purpose of construction period reduction and construction cost effectiveness. It is common to omit the loading test as a quality assurance on account of the high capacity of drilled shafts for the top & down method. It seems that the capacity of drilled shaft in recent top & down method is beyond that of conventional loading test method. However, the quality assurance for the drilled shaft as foundation of high rise building becomes much more important since the drilled shaft should bear much higher working load. A small scale test pile can be an alternative as a quality assurance for the drilled shaft with hish capacities. Through a case study, this paper gives an idea for solving the limitation of the conventional loading test method for the quality assurance of drilled shaft with high capacities. In particular, this paper analyzed the scale effect for a small drilled shaft installed into bedrock, which could be used for an alternative.

Analysis of Behaviors of Concrete Strengthened with FRP Sheets and Steel Fibers Under Low-Velocity Impact Loading (저속 충격하중에서의 FRP Sheet 및 강섬유 보강 콘크리트의 거동 해석)

  • Lee, Jin Young;Kim, Mi Hye;Min, Kyung Hwan;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.155-164
    • /
    • 2011
  • In the case of impact loading test, measurement of the test data has difficulties due to fast loading velocity. In addition, the dynamic behaviors of specimens are distorted by ignoring local fracture. In this study, therefore, finite element analysis which considers local fracture and strain rate effect on impact load was performed by using LS-DYNA, an explicit analysis program. The one-way and two-way specimens strengthened with FRP Sheets and steel fibers were considered as analysis models. The results showed that the impact resistance of steel fiber reinforced concrete (SFRC) and ultra high performance concrete (UHPC) was enhanced. In the case of specimens strengthened with FRP Sheets, GFRP was superior to CFRP in the performance of impact resistance, and there was little effect of the FRP Sheet orientation. The reliability of this analysis model was verified by comparing with previous experimental results.

A Failure Probability Estimation Method of Nonlinear Bridge Structures using the Non-Gaussian Closure Method (Non-Gaussian Closure 기법을 적용한 비선형 교량 구조계의 파괴확률 추정 기법)

  • Hahm, Dae-Gi;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.25-34
    • /
    • 2010
  • A method is presented for evaluating the seismic failure probability of bridge structures which show a nonlinear hysteretic dynamic behavior. Bridge structures are modeled as a bilinear dynamic system with a single degree of freedom. We regarded that the failure of bridges will occur when the displacement response of a deck level firstly crosses the predefined limit state during a duration of strong motion. For the estimation of the first-crossing probability of a nonlinear structural system excited by earthquake motion, we computed the average frequency of crossings of the limit state. We presented the non-Gaussian closure method for the approximation of the joint probability density function of response and its derivative, which is required for the estimation of the average frequency of crossings. The failure probabilities are estimated according to the various artificial earthquake acceleration sets representing specific seismic characteristics. For the verification of the accuracy and efficiency of presented method, we compared the estimated failure probabilities with the results evaluated from previous methods and the exact values estimated with the crude Monte-Carlo simulation method.