Web을 이용한 컴퓨터기반의 학습은 교육을 위한 유용한 적용방법이다. 이런 방법은 애니메이션과 상호작용을 통해 제공되어 지고 복잡한 설비들은 교본을 통해 쉽게 학습할 수 없다. 웹/인터넷이 가능한 응용문제들은 원격지에서 제어되고 모니터링 될 수 있으므로 전 세계 원격지 대학, 연구소 또는 회사에서 다양한 방법으로 충분히 사용된다. 컴퓨터와 전자기술의 결합을 통한 저가의 하드웨어 개발은 이전에 비해 웹/인터넷 기반기술의 발전을 통해 특별히 교육기관을 위해 만들어졌다. 따라서 이런 분야에 적합한 기술개발은 광범위한 웹기반 교육의 확장과 이를 위한 기술개발 적절한 투자가 필수적이다. 원격 가상계측기의 응용은 실험을 통해 검증되어져야 하며 공학도를 위해 실험이 가능할 수 있도록 적용되어야 한다.
기업 네트워크에서 안전하고 효과적이며 안정된 망 운영관리 환경 제공은 당면한 중요과제이며 기업 경쟁력의 핵심인 정보기술을 통한 생산성과도 연계성을 갖고 있다. 특히 전력통신망의 경우 전자메일, 회계관리, 전자결재, 도면자료관리 등의 데이터 통신망에서부터 IBM 온라인, 사내 방송망, 전력계통설비 원방 제어용 시스템들 간을 연결하는 EMS, SCADA 등 전력 수급용 전용 통신망에 이르기까지 다양한 종류의 통신망이 구축 운용되고 있다. 이러한 기업환경에 따라 네트워크를 효율적으로 관리하기 위한 네트워크 관리 시스템에 대한 관심이 증대되고 있으며 많은 네트워크 관리 시스템들이 도입되어 운영되었으나 이들 관리 시스템들은 모니터링에 의한 통계값 제공과 같은 단순 평면적인 관리 기능만을 제공한 뿐 네트워크의 특성과 환경에 따른 분석, 진단 기능은 제공하지 못하고 있다. 이와 더불어 네트워크 관리자는 보다 손쉬운 방법으로 네트워크를 관리하고자 하며, 보다 지능적이고 효율적으로 관리하고자 한다. 하지만 관리 시스템이 모든 네트워크에 대해 효율적이고 지능적인 관리 기능을 제공하기는 매우 어려우며 이는 장기간의 관리 네트워크의 특성과 트래픽 형태를 파악한 후에나 가능하다. 결국 지능적이고 효율적인 네트워크 관리는 네트워크의 특성과 함께 이전에 관리자에 의해서 내려졌던 관리 행위 및 의견 그리고 조치에 대한 이력정보를 학습하고 있을 때만 가능하다. 본 논문은 전력통신망을 대상으로 전력통신망이 지닌 네트워크 특성을 반영하며 네트워크 운영 과정에서 축적된 관리자의 의견과 이에 대한 조치를 지식 데이터베이스화하여 지능적인 관리 시스템을 제공하기 위한 기반 시스템으로써 전력통신망 운용 관리 지원시스템을 설계 및 구현하였다. 본 시스템은 향후 지식 정보를 학습하고 이를 바탕으로 논리적인 추론을 통해 관리 네트워크를 지능적이고 자동적으로 관리할 수 있는 시스템으로 확대 개발될 것이다.
The iterative learning controller makes the system output follow the desired output over a finite time interval through iterating trials. In this paper, first we discuss that the design problem of learning controller is originally the design problem of the inverse model. Then we show that the tracking error which is the difference between the desired output and the system output is reduced monotonically by properly modeled inverse system if the magnitude of the learning operator being introduced is bounded within the unit circle in complex domain. Also it would be shown that the conventional learning control method is a kind of extremely simplified inverse model learning control method of the objective controlled system. Hence this control method can be considered as a generalization of the conventional learning control method. The more a designer model the objective controlled system precisely, the better the performance of the approximated inverse model learning controller would be. Finally we compare the performance of the conventional learning control method with that of the approximated inverse model learning control method by computer simulation.
차량 인식 기술은 운전자에게 차량 충돌과 같은 위험요소를 사전에 인식시키거나 차량을 자동으로 제어하는 기술로 각광 받고 있다. 본 논문에서는 입력 영상에서 차량이 나타날 수 있는 관심 영역을 설정한 다음 미리 학습된 검출기를 통한 Haar-like와 Adaboost 알고리즘으로 차량 후보 영역을 검출하고 중복된 영역을 제거하기 위인식 기술해 클러스터링 기법을 적용하고, 칼만필터로 프레임 영상에서 차량을 추적 하고, 다시 중복된 영역에 대해 클러스터링 기법을 적용하는 방법을 제안하였다.
The main purpose of tunnel ventilation system is to maintain CO pollutant and VI (visibility index) under an adequate level to provide drivers with safe driving condition. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement teaming (RL) method. RL is a goal-directed teaming of a mapping from situations to actions. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. Constructing the reward of the tunnel ventilation system, two objectives listed above are included. RL algorithm based on actor-critic architecture and natural gradient method is adopted to the system. Also, the recursive least-squares (RLS) is employed to the learning process to improve the efficiency of the use of data. The simulation results performed with real data collected from existing tunnel are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.
본 연구에서는 지능형 대퇴 의족의 노면 적응 기술 구현시 보행 환경이 변화하는 구간 및 약 경사로 보행에서의 보행 불평형 문제를 해결하기 위한 방법으로 발목 관절 운동을 제어 가능한 하퇴 의족을 적용하였다. 제안한 태퇴 의족의 개발을 위해서는 보행의 단계 구분이 필수적이다. 이러한 보행의 입각기의 단계별 구분과 유각기의 판단을 위하여 대퇴의족의 슬관절 데이터와 관성센서 데이터를 바탕으로 의사 결정 나무 학습법과 랜덤포레스트 기법을 융합한 머신러닝 기술을 제안 및 적용하였다. 이러한 방법으로 발목의 운동 상태를 제어 하였으며 보행 평형이 문제가 해소 되는지를 butterfly diagram을 측정하여 평가 하였다.
본 논문에서는 날씨 변화에 따른 실외 LED 전광판의 시인성 확보를 위한 딥러닝 구조 개발에 관한 연구를 제안한다. 제안하는 기법은 영상장치를 이용한 딥러닝을 사용하여 날씨 변화에 따른 LED 휘도를 자동 조절함으로써 실외 LED 전광판의 시인성을 확보한다. 날씨 변화에 따른 LED 휘도를 자동 조절하기 위하여, 먼저 평면화된 배경 부분 이미지 데이터에 대한 전처리 과정을 거친 후, 합성곱 네트워크를 이용하여 학습시켜 날씨에 대한 분류를 진행할 수 있는 딥러닝 모델을 만들어낸다. 적용된 딥러닝 네트워크는 Residual learning 함수를 사용하여 입력값과 출력값의 차이를 줄임으로써 초기의 입력값의 특징을 가지고 가면서 학습하도록 유도한다. 다음에 날씨를 인식하여 날씨 변화에 따라 실외 LED 전광판의 휘도를 조절하는 제어기를 사용하여 주변 환경이 밝아지면 휘도가 높아지도록 변경하여 선명하게 보이도록 한다. 또한, 주변 환경이 어두워지면 빛의 산란에 의해 시인성이 떨어지기 때문에 전광판의 휘도가 내려가도록 하여 선명하게 보이도록 한다. 본 논문에서 제안하는 방법을 적용하여 LED 전광판의 날씨 변화에 따른 휘도 측정의 공인 측정 실험 결과는, 날씨 변화에 따라 실외 LED 전광판의 시인성이 확보됨을 확인하였다.
본 논문에서는 동공 검출을 이용한 얼굴 검출 방법을 제안하고자 한다. 동공검출기는 눈의 역반사 특성을 이용한 능동적 조명을 사용하여 검출을 용이하도록 하였고. 제안된 방법의 검출 범위는 소형컴퓨터나 무인정보 단말기 등의 활용에 적합하도록 하였다. 동공 후보 영역을 계산하여 검출한 후, 학습 규칙을 사용하여 얼굴에 대응하는 두 개의 지점을 선택하도록 하였다. 얼굴 검출 성능을 증명하기 위하여, 얼굴의 최대 돌출 부위를 지정 할 수 있는 이중 모드의 얼굴 추적 장치를 개발하였다. 추정치와 복합 얼굴 검출기의 측정치를 결합하여 특징 관계를 추적함으로 처리의 안정성을 높였으며 또한, 실시간으로 서보의 제어 장치를 원격 조정하여 항상 카메라가 이미지의 중앙을 추적하도록 함으로서 얼굴의 위치를 추정할 수 있도록 하였다.
본 연구는 자동차에 장착된 일반적인 자동변속기의 문제점을 향상시키기 위해서 지능형 변속선도 결정 모듈을 제안한다. 전형적인 자동변속기의 변속선도는 운전자의 습관 및 성향이 반영되지 않기 때문에 운전자가 원하는 변속점을 제공하지 못한다. 기존의 변속선도는 불필요한 기어의 변화가 발생하고 연료효율에도 좋지 않다. 또한 가끔 킥-다운과 같은 현상이 발생한다. 그래서 본 논문에서는 개인적인 운전자의 운전 스타일을 고려한 변속선도를 결정하는 지능형 변속 제어 방법을 연구한다. 운전스타일은 주행 중인 자동차의 실제 데이터를 이용하여 운전자의 성향 및 운전 습관에 의해 판단된다. 이 모듈은 실제 자동차 데이터를 학습하기 위해 신경회로망을 사용한 계층적 구조로 구성된다. 제안된 지능형 변속선도 제 어 모듈은 각 운전자의 운전스타일에 따라 운전에 필요한 토크와 속도를 제공하여 운전자에게 적합한 변속점과 변속시간을 제공할 수 있다.
본 논문에서는 동공 검출 기술을 이용한 얼굴 검출 방법을 제안하고자 한다. 동공 검출기는 눈의 역 반사 특성을 이용한 능동적 조명을 사용하여 검출을 용이하도록 하였고. 제안된 방법의 검출 범위는 소형 컴퓨터나 무인 정보 단말기 등의 활용에 적합하도록 하였다. 동공 후보 영역을 계산하여 검출한 후, 학습 규칙을 사용하여 얼굴에 대응하는 두 개의 지점을 선택하도록 하였다. 얼굴 검출 성능을 증명하기 위하여, 얼굴의 최대 돌출 부위를 지정 할 수 있는 이중 모드의 얼굴 추적 장치를 개발하였다. 추정치 와 복합 얼굴 검출기의 측정치를 결합하여 특징 관계를 추적함으로 처리의 안정성을 높이었다. 또한, 실시간으로 서보의 제어장치를 원격 조정하여 항상 카메라가 이미지의 중앙을 추적하도록 함으로서 얼굴의 위치를 추정할 수 있도록 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.