• 제목/요약/키워드: 학습 제어기

검색결과 378건 처리시간 0.019초

지능형 웨어러블 컴퓨팅의 응용 (Application of Intelligent Wearable Computing)

  • 김성주;정성호;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.304-309
    • /
    • 2004
  • 본 논문에서는 편리한 방식으로 착용할 수 있으며 지능을 지니고 있는 시스템을 구현하고자 한다. 인간을 보조하는 역할을 수행함과 동시에 착용할 수 있는 장점을 지닌 시스템의 구현은 다양한 제어기에 적용될 수 있다. 이동 중인 로봇의 상태를 파악하고 인간을 대신하여 명령을 전달해주는 시스템의 구현이 가능해진 것이다. 본 논문에서는 이동 로봇의 주행 정보를 받아들여 충돌 회피 주행에 필요한 속도와 회전각을 판단하여 명령을 전달하는 시스템을 착용 형태의 장치를 이용하여 구현하였다. 웨어러블 장치의 지능을 구현하기 위해 계층적 퍼지 논리와 신경망의 학습 능력을 결합하였다.

적응퍼지-뉴럴네트워크를 이용한 비선형 공정의 온-라인 모델링 (on-line Modeling of Nonlinear Process Systems using the Adaptive Fuzzy-neural Networks)

  • 오성권;박병준;박춘성
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1293-1302
    • /
    • 1999
  • In this paper, an on-line process scheme is presented for implementation of a intelligent on-line modeling of nonlinear complex system. The proposed on-line process scheme is composed of FNN-based model algorithm and PLC-based simulator, Here, an adaptive fuzzy-neural networks and HCM(Hard C-Means) clustering method are used as an intelligent identification algorithm for on-line modeling. The adaptive fuzzy-neural networks consists of two distinct modifiable sturctures such as the premise and the consequence part. The parameters of two structures are adapted by a combined hybrid learning algorithm of gradient decent method and least square method. Also we design an interface S/W between PLC(Proguammable Logic Controller) and main PC computer, and construct a monitoring and control simulator for real process system. Accordingly the on-line identification algorithm and interface S/W are used to obtain the on-line FNN model structure and to accomplish the on-line modeling. And using some I/O data gathered partly in the field(plant), computer simulation is carried out to evaluate the performance of FNN model structure generated by the on-line identification algorithm. This simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy and feasibility than other works achieved previously.

  • PDF

자기학습형 퍼지제어기에 의한 유도전동기 고성능 속도제어에 관한 연구 (A Study on the High Performance Speed Control of Induction Motor Using Self-Learning Fuzzy Controller)

  • 박영민;김연충;김재문;원충연;김영렬;김학성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.505-508
    • /
    • 1997
  • In this paper, an auto-tuning method for fuzzy controller based on the neural network is presented. The backpropagated error of neural emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and used for speed control of induction motor. For the torque control method, an indirect vector control scheme with slip calculation is used because of its stable characteristics regardless of speed. Motor input current is regulated by a current controlled voltage source PWM inverter using space voltage vector technique. Also, the scheme of current control fuzzy controller is synchronous reference frame with decoupling term. DSP(TMS320C31) is used to achieve the high speed calculation of the space voltage vector PWM and to build the self-learning fuzz. control algorithm. An IPM is used to simplify hardware design.

  • PDF

ANN에 의한 유도전동기의 회전자 저항 추정 (Rotor Resistance Estimation of Induction Motor by ANN)

  • 고재섭;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제20권10호
    • /
    • pp.27-34
    • /
    • 2006
  • 본 논문은 드라이브의 간적벡터제어에서 ANN을 이용하여 유도전동기의 회전자 저항을 온라인 추정하기 위한 새로운 기법을 제시한다. 약전파 알고리즘은 신경회로망의 학습을 위해 사용된다. 신경회로망의 실제 상태값과 유도전동기의 요구값 사이의 오차는 신경회로망 모델의 하중값 조절을 위하여 역전파 하여 실제값이 요구값을 추정하도록 한다. 드라이브의 회전자 저항, 토크, 자속응답 성능등 이러한 추정기의 성능은 고유값으로부터 회전자 저항을 연구하게 된다. 회전자 저항은 유도전동기 드라이브의 벡터제어에서 제시된 ANN을 사용하여 추정한다.

직접순차 확산 스펙트럼 시스템에서 데이터 재순환 적응 횡단선 필터의 LMS 알고리즘을 이용한 고속 수렴 속도 개선 (The Improvement of High Convergence Speed using LMS Algorithm of Data-Recycling Adaptive Transversal Filter in Direct Sequence Spread Spectrum)

  • 김광준;윤찬호;김천석
    • 한국정보통신학회논문지
    • /
    • 제9권1호
    • /
    • pp.22-33
    • /
    • 2005
  • 본 논문에서 직접순차 확산 스펙트럼 시스템의 적응 횡단선 필터에서 LMS 알고리즘의 수렴 속도를 향상시키기 위한 효율적인 신호간섭 제어기법을 제안한다. 수신 데이터를 재순환하여 심볼 시간주기에 계수들을 곱함으로써 적응되는 제안된 알고리즘의 수렴특성이 수렴 속도의 향상을 이론적으로 증명하기 위해 분석한다. 스텝-크기 매개변수 ${\mu}$가 증가됨에 따라 알고리즘의 수렴 속도가 제어된다. 또한, 스텝-크기 매개변수 ${\mu}$의 증가는 실험적으로 계산된 학습 곡선에서 분산을 감소시키는 효과를 갖는다. 고유치 확산을 증가시킴에 따라 즉응 등화기의 수렴속도를 천천히 제어하고 평균 자승 에러의 안정-상태 값을 증가시키는 효과를 나타내며 데이터-재사용 LMS 기술이 수렴속도를 (B+1)배만큼 증가시켜 필터 알고리즘에서 신호간섭제어의 우수성을 입증한다.

칼만필터 및 인공신경망에 기반한 가변속 풍력발전 시스템을 위한 비선형 제어기 설계 (Design of Nonlinear Controller for Variable Speed Wind Turbines based on Kalman Filter and Artificial Neural Network)

  • 문대선;김성호
    • 한국지능시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.243-250
    • /
    • 2010
  • 최근 풍력발전 시스템은 가장 빨리 발전하고 있는 신재생 에너지원중 하나로 각광을 받고 있으며, 풍력발전 시스템의 주된 관심사는 어떻게 광범위한 풍속의 변화에서도 효율적으로 시스템을 동작시키는 가에 있다. 가변속 풍력발전 시스템은 고정속 풍력발전 시스템에 비해 더 높은 에너지 효율, 낮은 컴포넌트 스트레스를 달성할 수 있다는 장점을 갖는다. 일반적으로 가변속 풍력발전 시스템의 제어를 위해서는 풍속정보의 취득이 필수적으로 요구된다. 하지만 풍속계 등에 의해 측정된 풍속은 여러 요인에 의해 정확하지 않다는 문제점을 갖는다. 이에 본 연구에서는 풍속의 추정을 위한 칼만 필터와 칼만 필터에 의해 추정된 정보를 사용하여 학습된 인공신경망으로부터 최적의 로터 회전 속도를 유추할 수 있는 새로운 형태의 가변속 풍력발전 시스템을 위한 제어 알고리듬을 제안하고자 한다. 또한 Matlab의 시뮬링크를 사용하여 다양한 시뮬레이션 수행하여 제안된 기법의 유용성을 확인하고자 한다.

하이브리드 지능시스템을 이용한 용접 파라메타 보상과 용접형상 평가에 관한 연구 (Estimation of Weld Bead Shape and the Compensation of Welding Parameters using a hybrid intelligent System)

  • 김관형;강성인
    • 한국정보통신학회논문지
    • /
    • 제9권6호
    • /
    • pp.1379-1386
    • /
    • 2005
  • 현재 산업현장에서 활용하는 용접용 로봇은 대부분 오프라인(off-line)으로 작업을 수행하고 있어 생산성과 용접 품질 향상에 그 기능을 충분하게 발휘하지 못하는 실정이다. 현재에는 용접 품질 향상을 위하여 용접 매카니즘이 많이 연구되어 많은 수학적인 해석과 물리적인 해석방법을 도입하여 비선형적인 용접 메카니즘을 연구하고 있다. 이러한 여러 가지 비선형적인 문제와 해석상의 어려움에도 불구하고 용접의 결함을 보완하기 위해 보다 정확한 용접데이터를 생성하기 위하여 고감도의 센서를 도입하여 신호처리 하고 있으며, 이를 이용하여 용접시스템에 포함시키는 피드백제어시스템(feed-back control system)을 구성하여 용접선 추적 및 용접 비드(bead) 형상제어에 응용하고 있다. 또한, 최근에는 인공지능제어기술이 발달되어 인간의 학습능력과 의사결정능력을 대신하는 신경회로망(neural network)과 퍼지이론(fuzzy logic)을 도입하여 용접기술을 개발하고 발전시키고 있다. 본 연구에서는 신경회로망이론을 이용하여 실시간으로 용접시스템을 모니터링하고 퍼지제어기에 의하여 용접결함을 보정하는 지능시스템을 개발방법을 제시하고자 한다.

퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발 (On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network)

  • 김용호;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.52-64
    • /
    • 1995
  • 로보트 매니퓰레이터는 고도의 비선형 시변 시스템으로써 정밀한 제어가 매우 어려운 제어 대상으로 인식되어 왔으며 따라서 수많은 제어이론의 적용대상이 되어왔다. 로보트 매니퓰레이터의 제어에는 두가지 형태가 있는데 한가지는 궤적계획이고, 또한가지는 궤적 추종이다. 본 논문에서는 궤적 추종을 목적으로 하고, 이를 위해 퍼지논리와 신경회로망을 결합한 지능형 제어를 제안한다. 제안된 제어시스템은 사고 및 추론과 같은 인간의 인식처리에 해당하는 불확실한 것들의 구체화를 가능케하는 퍼지논리와 학습 및 병렬처리능력이 있는 신경회로망을 융합하여 구성된 퍼지-신경망 제어시스템이다. 그러나 이러한 장점을 갖는 퍼지-신경망 제어기도 정확한 제어 규칙의 발생은 어려은데 이는 신경회로망의 지역적 최소치에 빠지는 특성에 기인한다고 볼 수 있다. 그리고 일반적으로 시스템의 비선형 정도는 탐색에 의해서만 알수 있는 성질의 것이므로 본 논문에서는 최적의 탐색알고리듬으로 널리 인정되고 있는 유전알고리듬을 사용하여 전역적이 규칙공간을 탐색한 후 이를 바탕으로 퍼지-신경망 제어기를 완성한다. 제안된 제어시스템의 효율성은 2자유도의 로보트 매니퓰레이터를 사용하여 컴퓨터의 모의실험을 통해 입증된다.

  • PDF

DC 모터를 위한 전류궤환형 학습제어기 설계 (Design of Current-Feedback Control for DC Motors)

  • 백승민;김진홍;국태용
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권12호
    • /
    • pp.1520-1526
    • /
    • 1999
  • This paper presents a current feedback learning controller for dynamic control of DC motors. The proposed controller uses the full third-order dynamics model of DC motor system to drive stable learning rules for virtual current learning input, voltage learning input, and the coefficient of electromotive force. It is shown that the proposed learning controller drives the state of uncertain DC motor system with unknown system parameters and external load torque to the desired one globally asymptotically. Computer simulation and experimental results are given to demonstrate the effectiveness of the proposed adaptive learning controller.

  • PDF

범용 신경망 연산기(ERNIE)를 위한 학습 모듈 설계 (Design of Learning Module for ERNIE(ERNIE : Expansible & Reconfigurable Neuro Informatics Engine))

  • 정제교;위재우;동성수;이종호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권12호
    • /
    • pp.804-810
    • /
    • 2004
  • There are two important things for the general purpose neural network processor. The first is a capability to build various structures of neural network, and the second is to be able to support suitable learning method for that neural network. Some way to process various learning algorithms is required for on-chip learning, because the more neural network types are to be handled, the more learning methods need to be built into. In this paper, an improved hardware structure is proposed to compute various kinds of learning algorithms flexibly. The hardware structure is based on the existing modular neural network structure. It doesn't need to add a new circuit or a new program for the learning process. It is shown that rearrangements of the existing processing elements can produce several neural network learning modules. The performance and utilization of this module are analyzed by comparing with other neural network chips.