• Title/Summary/Keyword: 학습 제어기

Search Result 378, Processing Time 0.024 seconds

(The Speed Control of Induction Motor using PD Controller and Neural Networks) (PD 제어기와 신경회로망을 이용한 유도전동기의 속도제어)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.2
    • /
    • pp.157-165
    • /
    • 2002
  • This paper presents the implementation of the speed control system for 3 phase induction motor using PD controller and neural networks. The PD controller is used to control the motor and to train neural networks at the first time. And neural networks are widely used as controllers because of a nonlinear mapping capability, we used feedforward neural networks(FNN) in order to simply design the speed control system of the 3 phase induction motor. Neural networks are tuned online using the speed reference, actual speed measured from an encoder and control input current to motor. PD controller and neural networks are applied to the speed control system for 3 phase induction motor, are compared with PI controller through computer simulation and experiment respectively. The results are illustrated that the output of the PD controller is decreased and feedforward neural networks act main controller, and the proposed hybrid controllers show better performance than the PI controller in abrupt load variation and the precise control is possible because the steady state error can be minimized by training neural networks.

A study on the PID adaptive position controller using GMDP Neural Network (GMDP 신경망을 이용한 PID 적응 위치 제어기에 관한연구)

  • 추연규;임영도
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.258-263
    • /
    • 1995
  • 본 논문은 일반화된 다중 수상돌기 적 (GMDP : Generalized Multi Dendrite Product) 유닛트 신경망을 이용한 PID 적응 위치제어기를 구성하여 직류 서어보 전동기의 위치제어를 실시간 처리 하였다. 제안한 제어기를 위치제어에 적용시켜 실험한 결과 기존의 MLP 신경망 제어기를 이용한 것 보다도 샘플시간을 줄일 수 있다는 장점으로 정밀한 제어 가 가능하다는 것을 확인할 수 있었다. 학습규칙은 기존의 역전파 학습방법이 GMDP 신경 회로망에 적용되었다.

  • PDF

Nonlinear Adaptive PID Controller based on a Cell-mediated Immune Response and a Gradient Descent Learning (세포성 면역 반응과 경사감소학습에 의한 비선형 적응 PID 제어기)

  • Park Jin-Hyun;Lee Tae-Hwan;Choi Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.88-95
    • /
    • 2006
  • PID controllers, which have been widely used in industry, have a simple structure and robustness to modeling error. But They we difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose a nonlinear adaptive PID controller based on a cell-mediated immune response and a gradient descent learning. This algorithm has a simple structure and robustness to system parameters variation. To verify performances of the proposed nonlinear adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

초고속 광 디스크 드라이브의 제어기 비교 연구

  • 고영철;왕지남;신서용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.439-443
    • /
    • 1994
  • 본 연구에서는,반복 학습 제어 이론에 기초하고 신경망을 이용하여 설계된 제어 기 술을 광 디스ㅋ 드라이브 시스템(Optical Disk System)을 제어하는데 적용한다. (광디스크 드라이브류에는 compact disk drive,mini drive, magnrto-optical disk drive 등이 있다) 반복 학습 제어이론은 불정확한 시스템의 제어에 이용되며 제어의 대상이 되는 시스템에 대해 보다 적은 정보로도 반복적으로 똑같은 일을 수행하는 것처럼 수행 도가 좋다. 신경망은 신경망의 입력에 대한 출력과 목표 출력간의 맵핑을 학습하고, 이 맵핑의 특성은 두 출력간(목표출력과 실제출력)의 차이를 감소시킨다. 이러한 특성을 가지는 신경망을 이용하여 제어기를 설계하고, 제안된 신경망 제어기를 광 디스크 드라이브 시 스템의 초점 제어에 적용한다. 제안된 제어 알고리즘은 다른 어떤 제어기술과 비교하여 보다 좋은 성능이 예상된다.

  • PDF

An Optimal Design of Neuro-Fuzzy Logic Controller Using Lamarckian Co-adaptation (라마키안 상호 적응에 의한 뉴로-퍼지 제어기의 최적 설계)

  • 이한별;김대진
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.384-389
    • /
    • 1998
  • 본 논문은 특정 응용에 적합한 퍼지 제어기의 최적 설계 파라메터(퍼지 규칙과 소속 함수)를 찾는데 역전파 학습 과정과 유전 알고리즘을 결합한 Lamarckian 상호적응 기법을 이용한 뉴로-퍼지 제어기의 새로운 설계 방법을 제안한다. 설계 파라메타들은 진화에 의한 전역적 탐색을 통해 높은 포함값과 유용한 퍼지 규칙들을 갖는 규칙 베이스와 작은 근사화 오차와 좋은 제어 성능을 갖는 소속 함수들을 얻도록 제어기간 파라메타 조절을 수행하며, 학습에 의한 국부적 탐색을 통해 각 퍼지 제어기가 원하는 제어 결과를 나타내도록 제어기내 파라메타 조절을 수행한다. 제안한 상호적응 설계 방법은 유전 알고리즘의 모든 세대에서 역전파 학습이 이루어지므로 보다 좋은 근사화 능력을 나타나고, 사용한 무게 중심 비퍼지화기가 정확한 비퍼지화값을 계산하므로 보다 좋은 제어 성능을 가지며, 퍼지 규칙 베이스와 소속 함수들의 최적화 탐색 과정이 입출력 공간의 같은 퍼지 분할 상에서 통합된 적응 함수에 의하여 동시에 수행되므로 탐색을 위한 작업 공간이 아주 작아지는 장점이 있다. 시뮬레이션 결과는 Lamarckian 상호 적응에 의해 얻어진 FLC가 퍼지 규\ulcorner 수, 근사화 능력, 제어 성능등 모든면에서 다른 방법에 의해 얻어진 FLC보다 가장 우수함을 보여준다.

  • PDF

A Novel Adaptive Controller for Periodic Disturbances Rejection (주기적 외란을 제거하기 위한 효율적인 적응제어기)

  • 나희승;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.04a
    • /
    • pp.22-27
    • /
    • 1994
  • 본 논문의 목적은 피이드백 제어시스템에서 주기적 외란(periodic disturbances),d$_{\omega}$, 이 출력센서에 감지될 경우, 이를 제거하기 위한 새로운 적응제어기(adaptive controller)를 설계하는 것이다. 2장에서는 주기적 외란을 제거하기 위한 방법으로 많이 사용되어 온 피이드백 제어기 (feedback controller)와 피이드포워드 제어기 (feedforward controller)를 설명한다. 3장에서는 적응 피이드포워드 제어기가 페루프 전달함수를 변경시키는 점에서 피이드백 제어기와 동일함을 보이고, 전달함수를 변경시키지 않아 페루프시스템의 강건성을 저하시키지 않는 효율적인 피이드포워드 제어기를 설계한다. 4장에서는 제안된 피이드포워드 제어기의 학습알고리즘을 유도한다. 5장에서는 모의 실험을 통하여 제안한 피이드포워드 제어기 및 학습 알고리즘의 효율성을 검증하기로 한다.

  • PDF

Indirect Adaptive Control of Nonlinear Systems Using a EKF Learning Algorithm Based Wavelet Neural Network (확장 칼만 필터 학습 방법 기반 웨이블릿 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어)

  • Kim Kyoung-Joo;Choi Yoon Ho;Park Jin Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.720-729
    • /
    • 2005
  • In this paper, we design the indirect adaptive controller using Wavelet Neural Network(WNN) for unknown nonlinear systems. The proposed indirect adaptive controller using WNN consists of identification model and controller. Here, the WNN is used in both Identification model and controller The WNN has advantage of indicating the location in both time and frequency simultaneously, and has faster convergence than MLPN and RBFN. There are several training methods for WNN, such as GD, GA, DNA, etc. In this paper, we present the Extended Kalman Filter(EKF) based training method. Although it is computationally complex, this algorithm updates parameters consistent with previous data and usually converges in a few iterations. Finally, ore illustrate the effectiveness of our method through computer simulations for the Buffing system and the one-link rigid robot manipulator. From the simulation results, we show that the indirect adaptive controller using the EKF method has better performance than the GD method.

A controller Design using Immune Feedback Mechanism (인체 면역 피드백 메카니즘을 활용한 제어기 설계)

  • Park, Jin-Hyun;Kim, Hyun-Duck;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.701-704
    • /
    • 2005
  • PID controllers, which have been widely used in industry, have a simple structure and robustness to modeling error. But They are difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose a nonlinear adaptive PID controller based on a cell-mediated immune response and a gradient descent learning. This algorithm has a simple structure and robustness to system parameters variation. To verify performances of the proposed nonlinear adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

  • PDF

A Comparison on the Learning Effect of Simulated Nonlinear Data Using a Modified Generic and Backpropagation Algorithm (개선된 유전자 알고리즘과 역전파 신경망 알고리즘을 이용한 비선형 모의자료의 학습비교)

  • Yoon, Yeo-Chang
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.694-696
    • /
    • 2005
  • 본 논문에서는 개선된 유전자 알고리즘과 역전파 신경망 알고리즘의 특징을 살펴보고, 비선형 모의자료를 이용하여 개선된 유전자 알고리즘 기반의 신경망 학습 효과와 역전파 신경망 알고리즘을 이용한 신경망 학습 효과를 비교해 본다. 유전자 알고리즘을 이용한 신경망 학습에는 개선된 신경망 제어기를 이용한다. 역전파 알고리즘을 이용한 신경망 학습에는 일반화 성능향상을 위한 인자들의 결합효과를 이용한다. 모의실험을 통하여 두 가지의 학습에서 학습 수령의 정도와 학습 속도 등을 비교하는 모의실험 결과를 개선된 유전자 알고리즘과 신경망 알고리즘의 학습 결과와 항께 제시한다. 모의실험의 결과로서 유전자 알고리즘을 적용한 개선된 신경망 제어기를 통한 학습 결과가 일반 신경망 학습 결과보다 초기 가중값을 작은 범위에서 발생시킬 때 수렴 정확도 및 학습 속도에서 좋은 결과를 나타내 주고 있다.

  • PDF

A Method of Self-Organizing for Fuzzy Logic Controller Through Learning of the Proper Directioin of Control (바람직한 제어 방향의 학습을 통한 퍼지 제어기의 자기 구성방법)

  • 이연정;최봉열
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.21-33
    • /
    • 1997
  • In this paper, a method of self-organizing for fuzzy logic controller(FLC) through learning of the proper direction of coritrol is proposed. In case of designing a self-organizing FLC for unknown dynamic plants based on the gradient descent method, it is difficult to identify the desirable direction of the change of control inpul. in which the error would be decreased. To resolve this problem, we propose a method as fo1lows:at first, assign representative values for the direction of change of error with respect to control input to each partitioned region of the states, and then, learn the fuzzy control rules using the reinforced representative values through iterative trials. 'The proposed self-organizing FLC has simple structure and it is easy to design. The validity of the proposed method is proved by the computer simulation for an inverted pendulum system.

  • PDF