• Title/Summary/Keyword: 학습 시.공간 데이터

Search Result 68, Processing Time 0.023 seconds

A Study on the Prediction of Rock Classification Using Shield TBM Data and Machine Learning Classification Algorithms (쉴드 TBM 데이터와 머신러닝 분류 알고리즘을 이용한 암반 분류 예측에 관한 연구)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.494-507
    • /
    • 2021
  • With the increasing use of TBM, research has recently been conducted in Korea to analyze TBM data with machine learning techniques to predict the ground in front of TBM, predict the exchange cycle of disk cutters, and predict the advance rate of TBM. In this study, classification prediction of rock characteristics of slurry shield TBM sites was made by combining traditional rock classification techniques and machine learning techniques widely used in various fields with machine data during TBM excavation. The items of rock characteristic classification criteria were set as RQD, uniaxial compression strength, and elastic wave speed, and the rock conditions for each item were classified into three classes: class 0 (good), 1 (normal), and 2 (poor), and machine learning was performed on six class algorithms. As a result, the ensemble model showed good performance, and the LigthtGBM model, which showed excellent results in learning speed as well as learning performance, was found to be optimal in the target site ground. Using the classification model for the three rock characteristics set in this study, it is believed that it will be possible to provide rock conditions for sections where ground information is not provided, which will help during excavation work.

An Electric Load Forecasting Scheme for University Campus Buildings Using Artificial Neural Network and Support Vector Regression (인공 신경망과 지지 벡터 회귀분석을 이용한 대학 캠퍼스 건물의 전력 사용량 예측 기법)

  • Moon, Jihoon;Jun, Sanghoon;Park, Jinwoong;Choi, Young-Hwan;Hwang, Eenjun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.293-302
    • /
    • 2016
  • Since the electricity is produced and consumed simultaneously, predicting the electric load and securing affordable electric power are necessary for reliable electric power supply. In particular, a university campus is one of the highest power consuming institutions and tends to have a wide variation of electric load depending on time and environment. For these reasons, an accurate electric load forecasting method that can predict power consumption in real-time is required for efficient power supply and management. Even though various influencing factors of power consumption have been discovered for the educational institutions by analyzing power consumption patterns and usage cases, further studies are required for the quantitative prediction of electric load. In this paper, we build an electric load forecasting model by implementing and evaluating various machine learning algorithms. To do that, we consider three building clusters in a campus and collect their power consumption every 15 minutes for more than one year. In the preprocessing, features are represented by considering periodic characteristic of the data and principal component analysis is performed for the features. In order to train the electric load forecasting model, we employ both artificial neural network and support vector machine. We evaluate the prediction performance of each forecasting model by 5-fold cross-validation and compare the prediction result to real electric load.

Evaluation and Predicting PM10 Concentration Using Multiple Linear Regression and Machine Learning (다중선형회귀와 기계학습 모델을 이용한 PM10 농도 예측 및 평가)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1711-1720
    • /
    • 2020
  • Particulate matter (PM) that has been artificially generated during the recent of rapid industrialization and urbanization moves and disperses according to weather conditions, and adversely affects the human skin and respiratory systems. The purpose of this study is to predict the PM10 concentration in Seoul using meteorological factors as input dataset for multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) models, and compared and evaluated the performance of the models. First, the PM10 concentration data obtained at 39 air quality monitoring sites (AQMS) in Seoul were divided into training and validation dataset (8:2 ratio). The nine meteorological factors (mean, maximum, and minimum temperature, precipitation, average and maximum wind speed, wind direction, yellow dust, and relative humidity), obtained by the automatic weather system (AWS), were composed to input dataset of models. The coefficients of determination (R2) between the observed PM10 concentration and that predicted by the MLR, SVM, and RF models was 0.260, 0.772, and 0.793, respectively, and the RF model best predicted the PM10 concentration. Among the AQMS used for model validation, Gwanak-gu and Gangnam-daero AQMS are relatively close to AWS, and the SVM and RF models were highly accurate according to the model validations. The Jongno-gu AQMS is relatively far from the AWS, but since PM10 concentration for the two adjacent AQMS were used for model training, both models presented high accuracy. By contrast, Yongsan-gu AQMS was relatively far from AQMS and AWS, both models performed poorly.

A Study on the Index Estimation of Missing Real Estate Transaction Cases Using Machine Learning (머신러닝을 활용한 결측 부동산 매매 지수의 추정에 대한 연구)

  • Kim, Kyung-Min;Kim, Kyuseok;Nam, Daisik
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.171-181
    • /
    • 2022
  • The real estate price index plays key roles as quantitative data in real estate market analysis. International organizations including OECD publish the real estate price indexes by country, and the Korea Real Estate Board announces metropolitan-level and municipal-level indexes. However, when the index is set on the smaller spatial unit level than metropolitan and municipal-level, problems occur: missing values. As the spatial scope is narrowed down, there are cases where there are few or no transactions depending on the unit period, which lead index calculation difficult or even impossible. This study suggests a supervised learning-based machine learning model to compensate for missing values that may occur due to no transaction in a specific range and period. The models proposed in our research verify the accuracy of predicting the existing values and missing values.

A study on the rock mass classification in boreholes for a tunnel design using machine learning algorithms (머신러닝 기법을 활용한 터널 설계 시 시추공 내 암반분류에 관한 연구)

  • Lee, Je-Kyum;Choi, Won-Hyuk;Kim, Yangkyun;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.469-484
    • /
    • 2021
  • Rock mass classification results have a great influence on construction schedule and budget as well as tunnel stability in tunnel design. A total of 3,526 tunnels have been constructed in Korea and the associated techniques in tunnel design and construction have been continuously developed, however, not many studies have been performed on how to assess rock mass quality and grade more accurately. Thus, numerous cases show big differences in the results according to inspectors' experience and judgement. Hence, this study aims to suggest a more reliable rock mass classification (RMR) model using machine learning algorithms, which is surging in availability, through the analyses based on various rock and rock mass information collected from boring investigations. For this, 11 learning parameters (depth, rock type, RQD, electrical resistivity, UCS, Vp, Vs, Young's modulus, unit weight, Poisson's ratio, RMR) from 13 local tunnel cases were selected, 337 learning data sets as well as 60 test data sets were prepared, and 6 machine learning algorithms (DT, SVM, ANN, PCA & ANN, RF, XGBoost) were tested for various hyperparameters for each algorithm. The results show that the mean absolute errors in RMR value from five algorithms except Decision Tree were less than 8 and a Support Vector Machine model is the best model. The applicability of the model, established through this study, was confirmed and this prediction model can be applied for more reliable rock mass classification when additional various data is continuously cumulated.

Accurate prediction of lane speeds by using neural network

  • Dong hyun Pyun;Changwoo Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.9-15
    • /
    • 2023
  • In this paper, we propose a method predicting the speed of each lane from the link speed using a neural network. We took three measures for configuring learning data to increase prediction accuracy. The first one is to expand the spatial range of the data source by including 14 links connected to the beginning and end points of the link. We also increased the time interval from 07:00 to 22:00 and included the data generation time in the feature data. Finally, we marked weekdays and holidays. Results of experiments showed that the speed error was reduced by 21.9% from 6.4 km/h to 5.0 km/h for straight lane, by 12.9% from 8.5 km/h to 7.4 km/h for right turns, and by 5.7% from 8.7 km/h to 8.2 km/h for left-turns. As a secondary result, we confirmed that the prediction accuracy of each lane was high for city roads when the traffic flow was congested. The feature of the proposed method is that it predicts traffic conditions for each lane improving the accuracy of prediction.

Traffic Speed Prediction Based on Graph Neural Networks for Intelligent Transportation System (지능형 교통 시스템을 위한 Graph Neural Networks 기반 교통 속도 예측)

  • Kim, Sunghoon;Park, Jonghyuk;Choi, Yerim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.70-85
    • /
    • 2021
  • Deep learning methodology, which has been actively studied in recent years, has improved the performance of artificial intelligence. Accordingly, systems utilizing deep learning have been proposed in various industries. In traffic systems, spatio-temporal graph modeling using GNN was found to be effective in predicting traffic speed. Still, it has a disadvantage that the model is trained inefficiently due to the memory bottleneck. Therefore, in this study, the road network is clustered through the graph clustering algorithm to reduce memory bottlenecks and simultaneously achieve superior performance. In order to verify the proposed method, the similarity of road speed distribution was measured using Jensen-Shannon divergence based on the analysis result of Incheon UTIC data. Then, the road network was clustered by spectrum clustering based on the measured similarity. As a result of the experiments, it was found that when the road network was divided into seven networks, the memory bottleneck was alleviated while recording the best performance compared to the baselines with MAE of 5.52km/h.

Deep Learning for Remote Sensing Applications (원격탐사활용을 위한 딥러닝기술)

  • Lee, Moung-Jin;Lee, Won-Jin;Lee, Seung-Kuk;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1581-1587
    • /
    • 2022
  • Recently, deep learning has become more important in remote sensing data processing. Huge amounts of data for artificial intelligence (AI) has been designed and built to develop new technologies for remote sensing, and AI models have been learned by the AI training dataset. Artificial intelligence models have developed rapidly, and model accuracy is increasing accordingly. However, there are variations in the model accuracy depending on the person who trains the AI model. Eventually, experts who can train AI models well are required more and more. Moreover, the deep learning technique enables us to automate methods for remote sensing applications. Methods having the performance of less than about 60% in the past are now over 90% and entering about 100%. In this special issue, thirteen papers on how deep learning techniques are used for remote sensing applications will be introduced.

Analysis on Strategies for Modeling the Wave Equation with Physics-Informed Neural Networks (물리정보신경망을 이용한 파동방정식 모델링 전략 분석)

  • Sangin Cho;Woochang Choi;Jun Ji;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.114-125
    • /
    • 2023
  • The physics-informed neural network (PINN) has been proposed to overcome the limitations of various numerical methods used to solve partial differential equations (PDEs) and the drawbacks of purely data-driven machine learning. The PINN directly applies PDEs to the construction of the loss function, introducing physical constraints to machine learning training. This technique can also be applied to wave equation modeling. However, to solve the wave equation using the PINN, second-order differentiations with respect to input data must be performed during neural network training, and the resulting wavefields contain complex dynamical phenomena, requiring careful strategies. This tutorial elucidates the fundamental concepts of the PINN and discusses considerations for wave equation modeling using the PINN approach. These considerations include spatial coordinate normalization, the selection of activation functions, and strategies for incorporating physics loss. Our experimental results demonstrated that normalizing the spatial coordinates of the training data leads to a more accurate reflection of initial conditions in neural network training for wave equation modeling. Furthermore, the characteristics of various functions were compared to select an appropriate activation function for wavefield prediction using neural networks. These comparisons focused on their differentiation with respect to input data and their convergence properties. Finally, the results of two scenarios for incorporating physics loss into the loss function during neural network training were compared. Through numerical experiments, a curriculum-based learning strategy, applying physics loss after the initial training steps, was more effective than utilizing physics loss from the early training steps. In addition, the effectiveness of the PINN technique was confirmed by comparing these results with those of training without any use of physics loss.

Speaker Adaptation for Voice Dialing (음성 다이얼링을 위한 화자적응)

  • ;Chin-Hui Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.455-461
    • /
    • 2002
  • This paper presents a method that improves the performance of the personal voice dialling system in which speaker independent phoneme HMM's are used. Since the speaker independent phoneme HMM based voice dialing system uses only the phone transcription of the input sentence, the storage space could be reduced greatly. However, the performance of the system is worse than that of the system which uses the speaker dependent models due to the phone recognition errors generated when the speaker independent models are used. In order to solve this problem, a new method that jointly estimates transformation vectors for the speaker adaptation and transcriptions from training utterances is presented. The biases and transcriptions are estimated iteratively from the training data of each user with maximum likelihood approach to the stochastic matching using speaker-independent phone models. Experimental result shows that the proposed method is superior to the conventional method which used transcriptions only.