Proceedings of the Korea Information Processing Society Conference
/
2011.04a
/
pp.1222-1225
/
2011
개인화된 IT 서비스의 트렌드는 학습자를 위한 튜터링 시스템에도 학습자의 능력과 수요를 고려한 개인화된 서비스를 요구하고 있다. 본 연구에서는 지능형 튜터링 시스템을 위해 사용자 프로파일 에이전트(UPA, User Profile Agent) 모델을 제안한다. UPA는 프로세스, 메타데이터, 사용자 인터페이스로 구성되어 있으며, 사용자의 기본 정보와 학력 및 경력 정보, 학습 영역 지식, 개인 능력 측정 정보를 메타데이터에 기반으로 저장한다. 저장된 사용자 프로파일 정보는 에이전트의 프로세스에 의해 가공되어 학습자에게 유용한 정보를 제공할 수 있도록 기여할 수 있다. 향후 본 논문의 모형 설계를 기반으로 이러닝 기술 환경의 변화를 반영한 지능화된 지능형 튜터링 시스템 개발에 기여할 수 있도록 연구 발전시키는 것을 목표로 한다.
Proceedings of the Korea Information Processing Society Conference
/
2007.05a
/
pp.1393-1395
/
2007
IEEE LOM 기반의 ADL SCORM, KEM 등을 통해 생산된 학습 콘텐츠는 데이터의 표준을 준수하여 이종의 학습시스템에서도 연동 될 수 있도록 상호운용성이 크게 향상되었고, 이를 통해 학습 콘텐츠의 유통과 검색, 접근이 매우 수월하게 개선되었다. OAI-PMH는 XML 기반의 학술 정보에 대한 메타데이터 통합을 통하여 개방형 검색이 가능하도록 시스템을 구현하기 위한 프레임워크로써 학술 정보의 통합 유통 체제에 매우 활용도가 높다. 본 논문에서는 OAI-PMH 의 SP/DP 개념의 메타데이타 수확(Harvesting) 기술을 활용하여 국내의 교육기관(학교), 연구 기관, 학술단체, 기업연수원 등에서 보유하고 있는 SCORM, KEM 기반의 학습 콘텐츠와 DC(Dublin Core) 기반의 학술 정보를 통합하여 사용자에게 정보 서비스를 제공하기 위한 개방형 학습.학술 정보 공유 시스템 설계를 제안하고자 한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.11a
/
pp.349-352
/
2009
최근 정보의 형태는 텍스트나 이미지 기반에서 벗어나 복합 멀티미디어, 즉 동영상 위주로 빠르게 이동하고 있다. 특히 사용자에 의해 제작되고 유통되는 동영상 UCC의 급격한 부상은 사용자의 정보 생산력과 정보 공유, 소비 형태를 능동적으로 변화시키고 있다. PC 뿐 아니라 IPTV에서도 주요 서비스 모델로 관심을 받는 동영상 UCC는 향후 지식 결부형 학습 콘텐츠로 옮아갈 것이라 예상되고 있으며 여기에는 수익 모델의 개발과 저작권 보호 이슈가 해결해야 할 선결 과제로 인식된다. 이에 본 논문은 방송 콘텐츠 제공 표준 기술인 TV-Anytime, 학습객체메타데이터인 LOM(Learning Object Metadata)을 기반으로 OSMU 동영상 UCC 학습 콘텐츠 서비스 모델을 위한 에디터를 설계하고 외부 콘텐츠 소스를 활용할 수 있는 콘텐츠 저작 시나리오에 기반한 메타데이터를 설계하였다. 이를 통해 사용자의 다양한 지식을 활용할 수 있는 UCC 학습 콘텐츠 서비스 모델 발굴과 콘텐츠의 확대 재생산에 있어서 적극적인 저작권 보호가 이루어질 것을 기대한다.
Proceedings of the Korean Society of Computer Information Conference
/
2019.01a
/
pp.155-158
/
2019
최근 지능형 CCTV 관제 시스템에 대한 수요가 증가하고 있다. CCTV 영상 데이터의 양이 폭발적으로 증가하고 있어 이를 분석하기 위한 기술의 발전이 필요한 실정이다. 대부분의 지능형 CCTV 관제 시스템은 영상 속 객체를 찾고 이 객체의 메타데이터를 통해 지능형 관제 시스템을 수행한다. 하지만 영상 속 객체의 로그가 항상 정확하지 않다. 현재의 객체 인식 기술로는 CCTV 영상의 밝기, 해상도 조건에 따라 성능의 차이가 심하고, 영상의 프레임 대비 빠르게 움직인 CCTV 영상 속 모든 객체를 사람이 인식하는 정도로 인식하기 어렵다. 이러한 이동 객체의 크기, 위치를 분석한 메타데이터에는 에러가 포함되기 쉽다. 본 논문에서는 지능형 CCTV 관제 시스템에서 분석한 영상 속 객체의 프레임 메타데이터 에러를 학습기반 실시간 에러 필터링 알고리즘을 통해 개선하여 에러가 필터링된 데이터를 사용하는 지능형 관제 시스템의 정확도 향상에 기여 할 것을 기대한다.
Proceedings of the Korea Information Processing Society Conference
/
2005.05a
/
pp.321-324
/
2005
기존의 LMS(Learning Management System)는 웹 기반의 e-Learning 교육의 장점에도 불구하고 학습자의 요구와 수준에 무관하게 학습과 관련한 컨텐츠들이 획일적으로 구성됨으로써, 학습자의 요구를 만족시키지 못하고 있다. 본 논문에서는 LCMS(Learning Content Management System) 와 LMS를 연계한 학습 통계 모듈을 제시하고, LMS에 학습자와 운영자에게 학습정보 데이터를 제공함으로써 학습하는 과정을 추적하고 학습이력을 관리 할 수 있는 학습통계모듈을 설계하고 구현한다. 제시된 모듈에서는 효과적인 학습통계을 위한 검색 방안으로 LCMS의 메타데이터와 다양한 학습관리 정보(CMI)값을 LMS를 호출하는 기능인 API(Application Program Interface) 어댑터를 이용하여 연계된 값과 LMS시스템에 학습지원과 운영지원 기능을 추가하여 나온 결과값을 바탕으로 하였다. 이 학습통계모듈을 통해서 LMS운영자는 학습자의 컨텐츠의 활용을 더욱 확장할 수가 있으며 학습자의 학습정보관리를 하는 LMS의 성능을 향상 시키고자 하였다.
In this paper, we introduced a system that extracts metadata by recognizing characters and objects in media using deep learning technology. In the field of broadcasting, multimedia contents such as video, audio, image, and text have been converted to digital contents for a long time, but the unconverted resources still remain vast. Building media archives requires a lot of manual work, which is time consuming and costly. Therefore, by implementing a deep learning-based metadata generation system, it is possible to save time and cost in constructing media archives. The whole system consists of four elements: training data generation module, object recognition module, character recognition module, and API server. The deep learning network module and the face recognition module are implemented to recognize characters and objects from the media and describe them as metadata. The training data generation module was designed separately to facilitate the construction of data for training neural network, and the functions of face recognition and object recognition were configured as an API server. We trained the two neural-networks using 1500 persons and 80 kinds of object data and confirmed that the accuracy is 98% in the character test data and 42% in the object data.
Journal of Korean Society of Archives and Records Management
/
v.20
no.2
/
pp.67-83
/
2020
Many local governments in Korea provide online services for people to easily access the audio-visual archives of events occurring in the area. However, the current method of managing these archives of the local governments has several problems in terms of compatibility with other organizations and convenience for searching of the archives because of the lack of standard metadata and the low utilization of image information. To solve these problems, we propose the metadata design and machine learning-based automatic indexing technology for the efficient management of the image archives of local governments in Korea. Moreover, we design metadata items specialized for the image archives of local governments to improve the compatibility and include the elements that can represent the basic information and characteristics of images into the metadata items, enabling efficient management. In addition, the text and objects in images, which include pieces of information that reflect events and categories, are automatically indexed based on the machine learning technology, enhancing users' search convenience. Lastly, we developed the program that automatically extracts text and objects from image archives using the proposed method, and stores the extracted contents and basic information in the metadata items we designed.
Proceedings of the Korea Information Processing Society Conference
/
2006.11a
/
pp.23-26
/
2006
최근 대부분의 이러닝(E-Learning)을 교육하는 사이트는 학습 콘텐츠를 검색하는 방법이 단순한 리스트의 나열과 택스트 매칭(Text matching)방법을 사용하는 단점이 있다. 이를 보완하기 위해 좀 더 컴퓨터가 정보 데이터의 의미를 분석하여 검색이 가능하도록 개념 네트워크인 시맨틱웹(Semantic Web)이 등장하였다. 본 논문에서는 이러한 시맨틱웹의 온톨로지(Ontology) 언어 중에 토픽맵(Topic Maps)을 사용하여 많은 양의 학습 정보 데이터를 쉽고도 정확하게 연결 지어 학습 콘텐츠에 대한 정보를 표현하고, 구조화할 수 있는 방법을 모색해 보고자 한다. 학습자의 관심분야 정보, 학습객체의 학습 권장자의 정보와 함께 학습 경험과 검색 빈도수를 분석한 협력 필터링과 학습 에이전트의 개인화 기법을 동시에 사용하여 선호도를 분석한다. 이 선호도를 가지고 학습자의 메타데이터를 생성하고, 로그 데이터를 따로 데이터베이스에 저장한다. 이러한 학습자의 정보와 학습 콘텐츠간의 정보를 상호 연결하여, 그 토픽맵을 사용하여 연관관계를 정의해 줌으로써 학업성취도를 높이고, 학습자 개개인의 성향에 가장 알맞은 학습 콘텐츠를 탐색해가는 네비게이터(Navigator)를 설계하였다.
Proceedings of the Korea Association of Information Systems Conference
/
2004.05a
/
pp.265-268
/
2004
최근 디지털 지식기반 사회에 대응하는 교육의 형태로 e-Learning이 교육적 대안으로 급부상하면서, 시스템의 상호 운영성 및 컨텐츠 명세, 활용을 지원하기 위한 표준화에 따른 연구가 국내외에서 급속도로 확산되고 있다. 특히, 국제표준기관에서 제시한 e-Learning 개발 환경을 위한 Learning Technology Standard Architecture(LTSA)와 Sharable Content Object Reference Model(SCORM)을 제 정하여 컨텐츠의 사용과 상호 호환을 가능하게 함으로써 e-Learning의 효율성을 증대시키고 산업 시장의 확장을 이룰 수 있다. 또한, 현재 많은 교육관련 업체에서는 SCORM 체계를 기반으로 한 학습 컨텐츠들을 개발하여 제공하고 있다. 따라서, 본 논문에서는 국제 표준 기술인 SCORM을 기반으로 개발된 학습 컨텐츠를 체계적으로 지원하기 위해 컨텐츠 관리 시스템 개발에 대한 기술을 정의하고, 다양한 관점의 컨텐츠 메타 데이터를 식별, 분류함으로써 컨텐츠의 생성과 저장, 검색 나아가 형상관리를 위한 기본 정보로 이용 가능하다. 또한 이들 메타 데이터를 기반으로 한 학습 컨텐츠 관리 시스템의 프로토타이핑을 제시함으로써 재사용성과 유지보수성 향상을 통해 컨텐츠 개발의 용이성과 품질 및 생산성을 높일 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.253-255
/
2002
본 논문에서는 다중 모델 기계학습 기법을 이용하여 문서 자동 분류의 성능과 신뢰도를 향상시킬 수 있는 연구와 실험 결과를 기술하였다. 기존의 다중 모텔 기계 학습법들이 훈련 데이터 또는 학습 알고리즘의 편향에 의한 오류를 극복하고 한 것들인데 비해 본 논문에서 제안한 메타 학습을 이용한 하이브리드 다중 모델 방식은 이 두 가지의 오류 원인을 동시에 해소하고자 하였다. 다양한 문서 집합에 대한 실험 결과, 본 연구에서 제안한 하이브리드 다중 모델 학습법이 전반적으로 기존의 일반 다중모델 학습법들에 비해 높은 성능을 보였으며, 다중 모델의 결합 방식으로서 메타 학습이 투표 방식에 비해 효율적인 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.