• Title/Summary/Keyword: 학습 데이터

Search Result 6,237, Processing Time 0.041 seconds

Sorghum Panicle Detection using YOLOv5 based on RGB Image Acquired by UAV System (무인기로 취득한 RGB 영상과 YOLOv5를 이용한 수수 이삭 탐지)

  • Min-Jun, Park;Chan-Seok, Ryu;Ye-Seong, Kang;Hye-Young, Song;Hyun-Chan, Baek;Ki-Su, Park;Eun-Ri, Kim;Jin-Ki, Park;Si-Hyeong, Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.295-304
    • /
    • 2022
  • The purpose of this study is to detect the sorghum panicle using YOLOv5 based on RGB images acquired by a unmanned aerial vehicle (UAV) system. The high-resolution images acquired using the RGB camera mounted in the UAV on September 2, 2022 were split into 512×512 size for YOLOv5 analysis. Sorghum panicles were labeled as bounding boxes in the split image. 2,000images of 512×512 size were divided at a ratio of 6:2:2 and used to train, validate, and test the YOLOv5 model, respectively. When learning with YOLOv5s, which has the fewest parameters among YOLOv5 models, sorghum panicles were detected with mAP@50=0.845. In YOLOv5m with more parameters, sorghum panicles could be detected with mAP@50=0.844. Although the performance of the two models is similar, YOLOv5s ( 4 hours 35 minutes) has a faster training time than YOLOv5m (5 hours 15 minutes). Therefore, in terms of time cost, developing the YOLOv5s model was considered more efficient for detecting sorghum panicles. As an important step in predicting sorghum yield, a technique for detecting sorghum panicles using high-resolution RGB images and the YOLOv5 model was presented.

Development and Testing of a RIVPACS-type Model to Assess the Ecosystem Health in Korean Streams: A Preliminary Study (저서성 대형무척추동물을 이용한 RIVPACS 유형의 하천생태계 건강성 평가법 국내 하천 적용성)

  • Da-Yeong Lee;Dae-Seong Lee;Joong-Hyuk Min;Young-Seuk Park
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.45-56
    • /
    • 2023
  • In stream ecosystem assessment, RIVPACS, which makes a simple but clear evaluation based on macroinvertebrate community, is widely used. In this study, a preliminary study was conducted to develop a RIVPACS-type model suitable for Korean streams nationwide. Reference streams were classified into two types(upstream and downstream), and a prediction model for macroinvertebrates was developed based on each family. A model for upstream was divided into 7 (train): 3 (test), and that for downstream was made using a leave-one-out method. Variables for the models were selected by non-metric multidimensional scaling, and seven variables were chosen, including elevation, slope, annual average temperature, stream width, forest ratio in land use, riffle ratio in hydrological characteristics, and boulder ratio in substrate composition. Stream order classified 3,224 sites as upstream and downstream, and community compositions of sites were predicted. The prediction was conducted for 30 macroinvertebrate families. Expected (E) and observed fauna (O) were compared using an ASPT biotic index, which is computed by dividing the BMWPK score into the number of families in a community. EQR values (i.e. O/E) for ASPT were used to assess stream condition. Lastly, we compared EQR to BMI, an index that is commonly used in the assessment. In the results, the average observed ASPT was 4.82 (±2.04 SD) and the expected one was 6.30 (±0.79 SD), and the expected ASPT was higher than the observed one. In the comparison between EQR and BMI index, EQR generally showed a higher value than the BMI index.

Rainfall image DB construction for rainfall intensity estimation from CCTV videos: focusing on experimental data in a climatic environment chamber (CCTV 영상 기반 강우강도 산정을 위한 실환경 실험 자료 중심 적정 강우 이미지 DB 구축 방법론 개발)

  • Byun, Jongyun;Jun, Changhyun;Kim, Hyeon-Joon;Lee, Jae Joon;Park, Hunil;Lee, Jinwook
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.403-417
    • /
    • 2023
  • In this research, a methodology was developed for constructing an appropriate rainfall image database for estimating rainfall intensity based on CCTV video. The database was constructed in the Large-Scale Climate Environment Chamber of the Korea Conformity Laboratories, which can control variables with high irregularity and variability in real environments. 1,728 scenarios were designed under five different experimental conditions. 36 scenarios and a total of 97,200 frames were selected. Rain streaks were extracted using the k-nearest neighbor algorithm by calculating the difference between each image and the background. To prevent overfitting, data with pixel values greater than set threshold, compared to the average pixel value for each image, were selected. The area with maximum pixel variability was determined by shifting with every 10 pixels and set as a representative area (180×180) for the original image. After re-transforming to 120×120 size as an input data for convolutional neural networks model, image augmentation was progressed under unified shooting conditions. 92% of the data showed within the 10% absolute range of PBIAS. It is clear that the final results in this study have the potential to enhance the accuracy and efficacy of existing real-world CCTV systems with transfer learning.

A Performance Comparison of Land-Based Floating Debris Detection Based on Deep Learning and Its Field Applications (딥러닝 기반 육상기인 부유쓰레기 탐지 모델 성능 비교 및 현장 적용성 평가)

  • Suho Bak;Seon Woong Jang;Heung-Min Kim;Tak-Young Kim;Geon Hui Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.193-205
    • /
    • 2023
  • A large amount of floating debris from land-based sources during heavy rainfall has negative social, economic, and environmental impacts, but there is a lack of monitoring systems for floating debris accumulation areas and amounts. With the recent development of artificial intelligence technology, there is a need to quickly and efficiently study large areas of water systems using drone imagery and deep learning-based object detection models. In this study, we acquired various images as well as drone images and trained with You Only Look Once (YOLO)v5s and the recently developed YOLO7 and YOLOv8s to compare the performance of each model to propose an efficient detection technique for land-based floating debris. The qualitative performance evaluation of each model showed that all three models are good at detecting floating debris under normal circumstances, but the YOLOv8s model missed or duplicated objects when the image was overexposed or the water surface was highly reflective of sunlight. The quantitative performance evaluation showed that YOLOv7 had the best performance with a mean Average Precision (intersection over union, IoU 0.5) of 0.940, which was better than YOLOv5s (0.922) and YOLOv8s (0.922). As a result of generating distortion in the color and high-frequency components to compare the performance of models according to data quality, the performance degradation of the YOLOv8s model was the most obvious, and the YOLOv7 model showed the lowest performance degradation. This study confirms that the YOLOv7 model is more robust than the YOLOv5s and YOLOv8s models in detecting land-based floating debris. The deep learning-based floating debris detection technique proposed in this study can identify the spatial distribution of floating debris by category, which can contribute to the planning of future cleanup work.

Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network (심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구)

  • Taeyoon Eom;Kwangnyun Kim;Yonghan Jo;Keunyong Song;Yunjeong Lee;Yun Gon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.207-221
    • /
    • 2023
  • This study suggests deep neural network models for estimating air temperature with Level 1B (L1B) datasets of GEO-KOMPSAT-2A (GK-2A). The temperature at 1.5 m above the ground impact not only daily life but also weather warnings such as cold and heat waves. There are many studies to assume the air temperature from the land surface temperature (LST) retrieved from satellites because the air temperature has a strong relationship with the LST. However, an algorithm of the LST, Level 2 output of GK-2A, works only clear sky pixels. To overcome the cloud effects, we apply a deep neural network (DNN) model to assume the air temperature with L1B calibrated for radiometric and geometrics from raw satellite data and compare the model with a linear regression model between LST and air temperature. The root mean square errors (RMSE) of the air temperature for model outputs are used to evaluate the model. The number of 95 in-situ air temperature data was 2,496,634 and the ratio of datasets paired with LST and L1B show 42.1% and 98.4%. The training years are 2020 and 2021 and 2022 is used to validate. The DNN model is designed with an input layer taking 16 channels and four hidden fully connected layers to assume an air temperature. As a result of the model using 16 bands of L1B, the DNN with RMSE 2.22℃ showed great performance than the baseline model with RMSE 3.55℃ on clear sky conditions and the total RMSE including overcast samples was 3.33℃. It is suggested that the DNN is able to overcome cloud effects. However, it showed different characteristics in seasonal and hourly analysis and needed to append solar information as inputs to make a general DNN model because the summer and winter seasons showed a low coefficient of determinations with high standard deviations.

Pre-service mathematics teachers' noticing competency: Focusing on teaching for robust understanding of mathematics (예비 수학교사의 수학적 사고 중심 수업에 관한 노티싱 역량 탐색)

  • Kim, Hee-jeong
    • The Mathematical Education
    • /
    • v.61 no.2
    • /
    • pp.339-357
    • /
    • 2022
  • This study explores pre-service secondary mathematics teachers (PSTs)' noticing competency. 17 PSTs participated in this study as a part of the mathematics teaching method class. Individual PST's essays regarding the question 'what effective mathematics teaching would be?' that they discussed and wrote at the beginning of the course were collected as the first data. PSTs' written analysis of an expert teacher's teaching video, colleague PSTs' demo-teaching video, and own demo-teaching video were also collected and analyzed. Findings showed that most PSTs' noticing level improved as the class progressed and showed a pattern of focusing on each key aspect in terms of the Teaching for Robust Understanding of Mathematics (TRU Math) framework, but their reasoning strategies were somewhat varied. This suggests that the TRU Math framework can support PSTs to improve the competency of 'what to attend' among the noticing components. In addition, the instructional reasoning strategies imply that PSTs' noticing reasoning strategy was mostly related to their interpretation of noticing components, which should be also emphasized in the teacher education program.

Improvement of Mid-Wave Infrared Image Visibility Using Edge Information of KOMPSAT-3A Panchromatic Image (KOMPSAT-3A 전정색 영상의 윤곽 정보를 이용한 중적외선 영상 시인성 개선)

  • Jinmin Lee;Taeheon Kim;Hanul Kim;Hongtak Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1283-1297
    • /
    • 2023
  • Mid-wave infrared (MWIR) imagery, due to its ability to capture the temperature of land cover and objects, serves as a crucial data source in various fields including environmental monitoring and defense. The KOMPSAT-3A satellite acquires MWIR imagery with high spatial resolution compared to other satellites. However, the limited spatial resolution of MWIR imagery, in comparison to electro-optical (EO) imagery, constrains the optimal utilization of the KOMPSAT-3A data. This study aims to create a highly visible MWIR fusion image by leveraging the edge information from the KOMPSAT-3A panchromatic (PAN) image. Preprocessing is implemented to mitigate the relative geometric errors between the PAN and MWIR images. Subsequently, we employ a pre-trained pixel difference network (PiDiNet), a deep learning-based edge information extraction technique, to extract the boundaries of objects from the preprocessed PAN images. The MWIR fusion imagery is then generated by emphasizing the brightness value corresponding to the edge information of the PAN image. To evaluate the proposed method, the MWIR fusion images were generated in three different sites. As a result, the boundaries of terrain and objects in the MWIR fusion images were emphasized to provide detailed thermal information of the interest area. Especially, the MWIR fusion image provided the thermal information of objects such as airplanes and ships which are hard to detect in the original MWIR images. This study demonstrated that the proposed method could generate a single image that combines visible details from an EO image and thermal information from an MWIR image, which contributes to increasing the usage of MWIR imagery.

Re-validation of the Revised Systems Thinking Measuring Instrument for Vietnamese High School Students and Comparison of Latent Means between Korean and Vietnamese High School Students (베트남 고등학생을 대상으로 한 개정 시스템 사고 검사 도구 재타당화 및 한국과 베트남 고등학생의 잠재 평균 비교)

  • Hyonyong Lee;Nguyen Thi Thuy;Byung-Yeol Park;Jaedon Jeon;Hyundong Lee
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.157-171
    • /
    • 2024
  • The purposes of this study were: (1) to revalidate the revised Systems Thinking Measuring Instrument (Re_STMI) reported by Lee et al. (2024) among Vietnamese high school students and (2) to investigate the differences in systems thinking abilities between Korean and Vietnamese high school students. To achieve this, data from 234 Vietnamese high school students who responded to translated Re_STMI consisting of 20 items and an Scale consisting of 20 items were used. Validity analysis was conducted through item response analysis (Item Reliability, Item Map, Infit and Outfit MNSQ, DIF between male and female) and exploratory factor analysis (principal axis factor analysis using Promax). Furthermore, structural equation modeling was employed with data from 475 Korean high school students to verify the latent mean analysis. The results were as follows: First, in the item response analysis of the 20 translated Re_STMI items in Vietnamese, the Item Reliability was .97, and the Infit MNSQ ranged from .67 to 1.38. The results from the Item Map and DIF analysis align with previous findings. In the exploratory factor analysis, all items were loaded onto intended sub-factors, with sub-factor reliabilities ranging from .662 to .833 and total reliability at .876. Confirmatory factor analysis for latent mean analysis between Korean and Vietnamese students yielded acceptable model fit indices (χ2/df: 2.830, CFI: .931, TLI: .918, SRMR: .043, RMSEA: .051). Lastly, the latent mean analysis between Korean and Vietnamese students revealed a small effect size in systems analysis, mental models, team learning, and shared vision factors, whereas a medium effect size was observed in personal mastery factors, with Vietnamese high school students showing significantly higher results in systems thinking. This study confirmed the reliability and validity of the Re_STMI items. Furthermore, international comparative studies on systems thinking using Re_STMI translated into Vietnamese, English, and other languages are warranted in the context of students' systems thinking analysis.

Region of Interest Extraction and Bilinear Interpolation Application for Preprocessing of Lipreading Systems (입 모양 인식 시스템 전처리를 위한 관심 영역 추출과 이중 선형 보간법 적용)

  • Jae Hyeok Han;Yong Ki Kim;Mi Hye Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.189-198
    • /
    • 2024
  • Lipreading is one of the important parts of speech recognition, and several studies have been conducted to improve the performance of lipreading in lipreading systems for speech recognition. Recent studies have used method to modify the model architecture of lipreading system to improve recognition performance. Unlike previous research that improve recognition performance by modifying model architecture, we aim to improve recognition performance without any change in model architecture. In order to improve the recognition performance without modifying the model architecture, we refer to the cues used in human lipreading and set other regions such as chin and cheeks as regions of interest along with the lip region, which is the existing region of interest of lipreading systems, and compare the recognition rate of each region of interest to propose the highest performing region of interest In addition, assuming that the difference in normalization results caused by the difference in interpolation method during the process of normalizing the size of the region of interest affects the recognition performance, we interpolate the same region of interest using nearest neighbor interpolation, bilinear interpolation, and bicubic interpolation, and compare the recognition rate of each interpolation method to propose the best performing interpolation method. Each region of interest was detected by training an object detection neural network, and dynamic time warping templates were generated by normalizing each region of interest, extracting and combining features, and mapping the dimensionality reduction of the combined features into a low-dimensional space. The recognition rate was evaluated by comparing the distance between the generated dynamic time warping templates and the data mapped to the low-dimensional space. In the comparison of regions of interest, the result of the region of interest containing only the lip region showed an average recognition rate of 97.36%, which is 3.44% higher than the average recognition rate of 93.92% in the previous study, and in the comparison of interpolation methods, the bilinear interpolation method performed 97.36%, which is 14.65% higher than the nearest neighbor interpolation method and 5.55% higher than the bicubic interpolation method. The code used in this study can be found a https://github.com/haraisi2/Lipreading-Systems.

A case study of elementary school mathematics-integrated classes based on AI Big Ideas for fostering AI thinking (인공지능 사고 함양을 위한 인공지능 빅 아이디어 기반 초등학교 수학 융합 수업 사례연구)

  • Chohee Kim;Hyewon Chang
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.255-272
    • /
    • 2024
  • This study aims to design mathematics-integrated classes that cultivate artificial intelligence (AI) thinking and to analyze students' AI thinking within these classes. To do this, four classes were designed through the integration of the AI4K12 Initiative's AI Big Ideas with the 2015 revised elementary mathematics curriculum. Implementation of three classes took place with 5th and 6th grade elementary school students. Leveraging the computational thinking taxonomy and the AI thinking components, a comprehensive framework for analyzing of AI thinking was established. Using this framework, analysis of students' AI thinking during these classes was conducted based on classroom discourse and supplementary worksheets. The results of the analysis were peer-reviewed by two researchers. The research findings affirm the potential of mathematics-integrated classes in nurturing students' AI thinking and underscore the viability of AI education for elementary school students. The classes, based on AI Big Ideas, facilitated elementary students' understanding of AI concepts and principles, enhanced their grasp of mathematical content elements, and reinforced mathematical process aspects. Furthermore, through activities that maintain structural consistency with previous problem-solving methods while applying them to new problems, the potential for the transfer of AI thinking was evidenced.