• 제목/요약/키워드: 학습 데이터

검색결과 6,438건 처리시간 0.036초

클라우드 환경에서 보안 가시성 확보를 위한 자동화된 패킷 분류 및 처리기법 (Near Realtime Packet Classification & Handling Mechanism for Visualized Security Management in Cloud Environments)

  • 안명호;류미현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.331-337
    • /
    • 2014
  • 컴퓨팅 패러다임이 클라우드 컴퓨팅으로 변화됨에 따라 보안 이슈가 더욱 더 중요하게 되었다. 컴퓨팅 플랫폼 서비스 제공자들은 Firewall, Identity Management 등을 제공하지만 클라우드 컴퓨팅 인프라는 사용자가 맘대로 제어하거나 새로운 장치들을 부착하여 사용할 수 없기 때문에 비교적 보안에 취약한 것이 사실이다. 이런 환경에서는 사용자 스스로 보안을 대비해야 하기 때문에 직관적인 방법으로 전체 네트워크 트래픽 상황을 가시적으로 조망할 수 있는 기법이 필요하다. 이를 위해서는 네트워크 패킷을 실시간으로 저장하고, 저장된 데이터를 준 실시간으로 분류할 수 있는 기술이 요구된다. 네트워크 패킷 분류에서 중요한 사항은 패킷 분류를 비지도 방식으로 사람의 개입 없이도 판단 기준을 지능적으로 생성하고 이를 통해 패킷을 스스로 판별할 수 있는 기술개발이 필요하다. 또한, 이를 위해서 Naive-Bayesian Classifier, Packet Chunking 등의 방법들을 활용해 사용자 개입없이 분류에 필요한 시그니쳐(Signature)를 탐색하고 이를 학습해 스스로 자동화된 패킷 분류를 실현할 수 있는 방안을 제시한다.

  • PDF

최적 위장무늬 디자인을 위한 한반도 자연환경 대표 색상 군집화 연구 (A Study on Clustering Representative Color of Natural Environment of Korean Peninsula for Optimal Camouflage Pattern Design)

  • 전성국;김회민;윤선규;윤정록;김운용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.315-316
    • /
    • 2019
  • 전투복, 군용 천막 등에 사용되는 위장무늬는 군 작전 수행 시 주변 환경의 색상, 패턴을 모사하여 개인병사 및 무기체계의 위장 기능을 극대화하고, 이를 통해 아군의 생명과 시설피해를 최소화하기 위한 목적으로 사용된다. 특히 최근 들어 군의 작전환경과 임무가 복잡하고 다양해짐에 따라, 작전환경에 대한 데이터의 취득 및 정량적 분석을 통해 전장 환경에 최적화된 위장무늬 패턴 및 색상 추출에 대한 연구의 필요성이 증대되고 있다. 본 논문에서는 한반도 자연환경 영상에 대한 자기 조직화 지도(SOM, Self-organizing Map) 기반의 한반도 자연환경 대표 색상 군집화 연구 방법에 대해 서술한다. 이를 위해 한반도 내 위도를 고려한 장소에서 시간별, 계절별 자연환경 영상 수집을 진행하며, 수집된 영상 내 다수의 화소의 군집화를 위해 2차원 SOM을 활용한다. 영상 내 각 화소의 색상 값에 대한 SOM의 학습 시, RGB공간상의 색차/색상 인지 왜곡을 피하기 위하여 CIEDE2000 색차 식을 통해 군집화를 진행한다. 실험결과에서는 온라인상으로 수집한 여름 및 가을철 대표 색상 군집화 결과와, 현재까지 수집된 계절별 자연환경 사진 내 6억 7648개 화소에 대한 대표 색상 군집화 결과를 보여준다.

  • PDF

납기와 작업준비비용을 고려한 병렬기계에서 딥러닝 기반의 일정계획 생성 모델 (Scheduling Generation Model on Parallel Machines with Due Date and Setup Cost Based on Deep Learning)

  • 유우식;서주혁;이동훈;김다희;김관호
    • 한국전자거래학회지
    • /
    • 제24권3호
    • /
    • pp.99-110
    • /
    • 2019
  • 4차 산업혁명이 진행되면서 제조업에서 사물인터넷(IoT), 머신러닝과 같은 지능정보기술을 적용하는 사례가 증가하고 있다. 반도체/LCD/타이어 제조공정에서는 납기일(due date)을 준수하면서 작업물 종류 변경(Job change)으로 인한 작업 준비 비용(Setup Cost)을 최소화하는 일정계획을 수립하는 것이 효과적인 제품 생산을 위해 매우 중요하다. 따라서 본 연구에서는 병렬기계에서 딥러닝 기반의 납기 지연과 작업 준비 비용 최소화를 달성하는 일정계획 생성 모델을 제안한다. 제안한 모델은 과거의 많은 데이터를 이용하여 고려되어지는 주문에 대해 작업 준비와 납기 지연을 최소화하는 패턴을 학습한다. 따라서 세 가지 주문 리스트의 난이도에 따른 실험 결과, 본 연구에서 제안한 기법이 기존의 우선순위 규칙보다 성능이 우수하다는 것을 확인하였다.

인공지능 적용 산업과 발전방향에 대한 분석 (Analysis of AI-Applied Industry and Development Direction)

  • 문승혁
    • 문화기술의 융합
    • /
    • 제5권1호
    • /
    • pp.77-82
    • /
    • 2019
  • 인공지능은 기술개발 속도가 가속화되어 생활, 의료, 금융 서비스 및 자율자동차 등 산업 전반에 적용되고 있다. 4차 산업혁명 시대의 핵심기술로 자리 잡고 있는 인공지능 경쟁력 확보를 위해 선진국들은 국가적 역량을 집중하고 있다. 반면 IT강국으로서의 인프라와 인적자원을 보유한 한국은 미국, 캐나다, 일본, 등 전통적인 인공지능 선진국뿐만 아니라 지능형 기술집약 산업 육성에 총력을 기울이는 후발주자 중국에도 뒤쳐져있는 상황이다. 지능정보 사회의 고도화에 따라 인공지능은 향후 국가의 산업경쟁력을 좌우할 기반기술인바, 국가적인 관심과 역량 결집이 필요하다. 또한 인공지능 기술의 종속을 막기 위하여 자체 기술개발 노력과 함께 선두업체와의 공동 개발이 중요하다. 이에 더하여 인공지능 시장 저변 확대를 위하여 제도 개선과 법률적 기반 마련이 시급하다.

IEEE 802.16e 기반 OFDMA 물리층 분석 알고리즘 연구 (Develop physical layer analysis algorithm for OFDMA signal based IEEE 802.16e)

  • 장민기
    • 한국산학기술학회논문지
    • /
    • 제20권6호
    • /
    • pp.342-349
    • /
    • 2019
  • 802.16e에 기반한 OFDMA 물리층 분석을 위한 분석 장비 개발에 있어, 하드웨어 구성 및 신호 특성 분석 알고리즘에 관한 방법론에 대해 기술하고 구현결과를 분석한다. 최근 디지털 통신 신호의 발달과 함께 이를 분석하는 계측기의 신호분석에 대한 수요도 빠르게 증가하고 있다. 신호분석에 대한 수요의 급속한 증가에 따라 광대역 디지털 신호처리 모듈을 이용한 광대역통신 신호 특성 분석이 가능한 신호분석 장비를 개발하는 것이 필요하다. 본 논문에서는 광대역통신 신호 특성 분석이 가능한 장비를 고안하기 위하여 첫째, OFDMA의 기본이론을 학습하고, 둘째 OFDMA 송/수신기 구조를 검토하였으며 셋째, 광대역 디지타이져를 구현하였다. 광대역 통신기법 중 OFDMA에 기반한 Wimax 신호분석 알고리즘을 설계하여 I, Q신호를 통한 Wimax 물리층 분석 SW구현을 제안하였다. IF다운 컨버터는 스펙트럼 분석기의 수신 모듈 및 LO발생 모듈을 이용하였으며, I, Q 데이터에 의한 WiMAX 신호분석 알고리즘을 통해 정량적 분석결과를 도출 하였다.

LSTM 순환 신경망을 이용한 초음파 도플러 신호의 음성 패러미터 추정 (Estimating speech parameters for ultrasonic Doppler signal using LSTM recurrent neural networks)

  • 주형길;이기승
    • 한국음향학회지
    • /
    • 제38권4호
    • /
    • pp.433-441
    • /
    • 2019
  • 본 논문에서는 입 주변에 방사한 초음파 신호가 반사되어 돌아올 때 발생하는 초음파 도플러 신호를 LSTM(Long Short Term Memory) 순환 신경망 (Recurrent Neural Networks, RNN)을 이용해 음성 패러미터를 추정하는 방법을 소개하고 다층 퍼셉트론 (Multi-Layer Perceptrons, MLP) 신경망을 이용한 방법과 성능 비교를 하였다. 본 논문에서는 LSTM 순환 신경망을 이용해 초음파 도플러 신호로부터 음성 신호의 푸리에 변환 계수를 추정하였다. LSTM 순환 신경망을 학습하기 위한 입력 및 기준값으로 초음파 도플러 신호와 음성 신호로부터 각각 추출된 멜 주파수 대역별 에너지 로그값과 푸리에 변환 계수가 사용되었다. 테스트 데이터를 이용한 실험을 통해 LSTM 순환 신경망과 MLP의 성능을 평가, 비교하였고 척도로는 평균 제곱근 오차(Root Mean Squared Error, RMSE)가 사용되었다.각 실험의 RMSE는 각각 0.5810, 0.7380로 나타났다. 약 0.1570 차이로 LSTM 순환 신경망을 이용한 방법의 성능 우세한 것으로 확인되었다.

R-FCN과 Transfer Learning 기법을 이용한 영상기반 건설 안전모 자동 탐지 (Image-Based Automatic Detection of Construction Helmets Using R-FCN and Transfer Learning)

  • 박상윤;윤상현;허준
    • 대한토목학회논문집
    • /
    • 제39권3호
    • /
    • pp.399-407
    • /
    • 2019
  • 대한민국에서 건설업은 타 업종들과 비교하여 안전사고의 위험성이 가장 높게 나타난다. 따라서 건설업 내 안전성 향상을 도모하기 위해 여러 연구가 예전부터 진행이 되어 왔고, 본 연구에선 건설현장 영상 데이터를 기반으로 물체 탐지 및 분류 알고리즘을 이용해서 효과적인 안전모 자동탐지 시스템을 구축하여 건설현장 노동자들의 안전성 향상에 기여하고자 한다. 본 연구에서 사용된 알고리즘은 Convolutional Neural Network (CNN) 기반의 물체 탐지 및 분류 알고리즘인 Region-based Fully Convolutional Networks (R-FCN)이고 이를 Transfer Learning 기법을 사용하여 딥러닝을 실시하였다. ImageNet에서 수집한 1089장의 사람과 안전모가 포함된 영상으로 학습을 시행하였고 그 결과, 사람과 안전모의 mean Average Precision (mAP)은 각각 0.86, 0.83로 측정되었다.

NACA0015 익형의 압력항력 감소를 위한 인공신경망 기반의 피드백 유동 제어 (Feedback Flow Control Using Artificial Neural Network for Pressure Drag Reduction on the NACA0015 Airfoil)

  • 백지혜;박수형
    • 한국항공우주학회지
    • /
    • 제49권9호
    • /
    • pp.729-738
    • /
    • 2021
  • 본 연구에서는 실속 받음각 근처에 발생하는 익형 위의 유동박리를 억제하기 위하여 인공신경망 기반의 피드백 유동제어를 NACA0015 익형에 수치적으로 적용하였다. 익형 위 박리영역 크기의 축소화라는 제어 목표를 달성하기 위해 익형의 박리 지점 근처에 인위적 외란(Blowing & Suction) 제어 신호를 적용하였다. 유동의 운동을 나타내는 시스템 모델링 단계에서 압력데이터에 적합직교분해(Proper Orthogonal Decomposition)를 적용하여 유동제어에 필요한 운동 모드를 추출하고 유동의 특성을 분석하였다. 분해된 모드를 기반으로 NARX(Nonlinear AutoRegressive Exogenous) 구조의 인공 신경망을 학습하여 유동의 운동을 나타내도록 하였으며, 최종적으로 피드백 제어루프에 작동시켰다. 예측된 제어신호를 CFD 해석에 적용하였으며 제어 유/무에 따른 공력특성을 분석하고 익형 주변의 고유 공간모드의 변화를 비교하여 제어 효과를 분석하였다. 본 연구에서 진행된 피드백 제어는 약 29%의 압력항력 감소효과를 보여주었으며, 이는 익형 뒷전의 큰 압력회복으로 인해 나타나는 것을 확인하였다.

효율적인 객체 검출을 위해 Attention Process를 적용한 경량화 모델에 대한 연구 (A Study on Lightweight Model with Attention Process for Efficient Object Detection)

  • 박찬수;이상훈;한현호
    • 디지털융복합연구
    • /
    • 제19권5호
    • /
    • pp.307-313
    • /
    • 2021
  • 본 논문에서는 기존 객체 검출 방법 대비 매개변수를 감소시킨 경량화 네트워크를 제안하였다. 현재 사용되는 검출 모델의 경우 정확도 향상을 위해 네트워크 복잡도를 크게 늘렸다. 따라서, 제안하는 네트워크는 EfficientNet을 특징 추출 네트워크로 사용하였으며, 후속 레이어는 저수준 세부 특징과 고수준의 의미론적 특징을 활용하기 위해 피라미드 구조로 형성하였다. 피라미드 구조 사이에 attention process를 적용하여 예측에 불필요한 노이즈를 억제하였다. 네트워크의 모든 연산 과정은 depth-wise 및 point-wise 컨볼루션으로 대체하여 연산량을 최소화하였다. 제안하는 네트워크는 PASCAL VOC 데이터셋으로 학습 및 평가하였다. 실험을 통해 융합된 특징은 정제 과정을 거쳐 다양한 객체에 대해 견고한 특성을 보였다. CNN 기반 검출 모델과 비교하였을 때 적은 연산량으로 검출 정확도가 향상되었다. 향후 연구로 객체의 크기에 맞게 앵커의 비율을 조절할 필요성이 사료된다.

Tongue Segmentation Using the Receptive Field Diversification of U-net

  • Li, Yu-Jie;Jung, Sung-Tae
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권9호
    • /
    • pp.37-47
    • /
    • 2021
  • 본 논문에서는 U-네트에서 수용 영역을 다양화하여 기존의 모델보다 정확도가 개선된 새로운 혀 영역 분할을 위한 딥러닝 모델을 제안한다. 수용 영역 다양화를 위하여 병렬 컨볼루션, 팽창된 컨볼루션, 상수 채널 증가 등의 방법을 사용하였다. 제안된 딥러닝 모델에 대하여, 학습 영상과 테스트 영상이 유사한 TestSet1과 그렇지 않은 TestSet2의 두 가지 테스트 데이터에 대해 혀 영역검출 실험을 진행하였다. 수용 영역이 다양화됨에 따라 혀 영역 분할 성능이 향상되는 것을 실험결과에서 확인할 수 있었다. 제안한 방법의 mIoU 값은 TestSet1의 경우 98.14%, TestSet2의 경우 91.90%로 U-net, DeepTongue, TongueNet 등 기존 모델의 결과보다 높았다.