Proceedings of the Korean Society of Broadcast Engineers Conference
/
한국방송공학회 2015년도 하계학술대회
/
pp.322-325
/
2015
본 논문에서는 개선된 자세 인식을 위한 학습을 통한 자세 인식 기법을 제안한다. 제안 자세 인식 기법은 영상의 모든 픽셀 값을 사용하지 않으며 인체의 골격의 위치 정보와 자세의 학습을 기반으로 한다. 최근 자세 인식기법에 다양한 기계 학습 기법을 적용하여 제스처 인식률을 높이는 연구가 진행되고 있지만 실시간 프레임에 적용하는데 한계가 있다. 반면 고차원의 특징점을 추출하여 신경망 학습방식을 이용하면 적은 계산량과 손쉬운 실행이 가능하다. 고차원의 특징점은 깊이 정보로부터 사람의 골격 정보를 이용해 추출하여 차원을 감소시키며 신경망 학습 방식에서는 각 자세에 대한 고차원의 특징점을 이용하여 자세의 학습을 진행한다. 신경망학습은 학습 단계에서는 미리 알려진 자세와 예측된 자세의 비교를 통해 오류를 최소화 하는 방향으로 학습을 진행하며, 판별 단계에서는 새로운 자세를 입력하여 고차원 특징점을 이용한 신경망 학습 기반의 제안 기술의 성능을 평가한다. 실험에 의하면 제안 기법은 약 96%의 자세 인식률을 보이고 자세 인식기법을 동작 인식으로 확장 가능성 또한 보인다.
Proceedings of the Korea Information Processing Society Conference
/
한국정보처리학회 2011년도 춘계학술발표대회
/
pp.1445-1446
/
2011
최근 스마트 컴퓨팅 시대를 맞아 스마트 러닝 시스템에 대한 관심도가 급증하고 있다. 스마트 러닝의 개념은 크게 2가지로 스마트 단말기를 이용한 학습 방법과 학습을 위한 스마트 학습 기법으로 나누어 볼 수 있다. 스마트 학습 기법은 학습자에게 좀 더 효율적이면서 학습의 효과를 증대시키기 위해 학습자의 성향과 학습자의 프로파일, 학습 상황 등을 인지하여 분석하고 적용할 수 있는 기법을 말한다. 본 논문에서는 학습자에게 스마트 러닝을 위한 스마트 학습 기법을 적용한 시스템 설계를 제안하고자 한다. 본 연구에서 제안하고 있는 스마트 러닝 시스템은 학습자에게 적합한 교수학습 모형을 자동으로 적용하여 학습의 효과를 극대화하고, 학습의 유형과 학습 패턴의 변화에 따라 시스템이 학습자에게 지능적으로 대처할 수 있도록 하는 것이다. 교수학습 모형이 학습자에게 자동변화 되기 위해서는 학습자의 성향분석 그리고 형성평가, 사후평가 등의 데이터 분석을 수집하고 자동으로 분석하여 적용 할 수 있는 스마트 학습 에이전트(SSA:Smart Study Agent)가 필요하다. 따라서 본 논문에서는 SSA 설계를 기반으로 스마트 러닝 시스템의 필요성과 향후 연구 발전에 따른 이러닝(e-learning) 교육 혁신에 기여하고자 한다.
Proceedings of the Korea Water Resources Association Conference
/
한국수자원학회 2019년도 학술발표회
/
pp.58-58
/
2019
최근 기계학습기법에 대한 활발한 연구로 인하여 많은 기계학습기법들이 개발되었다. 이러한 최신기계학습기법은 기존에 사용되어온 기계학습기법과 경험식들보다 자연현상을 예측하고 재현하는데 높은 성능을 보이는 것으로 알려져 있다. 레이더 자료를 이용한 강우추정 기법으로는 ZR관계식이 널리 사용되고 있다. 이상적인 조건에서는 ZR 관계식을 이용한 레이더 강우추정이 양호한 성능을 보이나, 실제 레이더 자료를 이용한 강우추정은 이상적인 환경이 아닌 경우가 매우 많다. 이런 ZR관계식의 한계점을 보완하기 위한 방법으로 기계학습기법을 이용한 레이더 강우추정 기법들이 개발되었으나, 현재 한국의 레이더 자료를 대상으로 해서는 많은 연구가 진행되어 오지 않고 있다. 레이더 자료를 이용한 강우추정의 정확도 향상을 위해서는 최신 기계학습기법들의 레이더 강우추정 기법에 대한 적용가능성을 평가해 볼 필요성이 있다. 본 연구에서는 random forest, stochastic gradient boosted model, extreme learning machine의 강우 레이더 강우추정 기법으로의 적용성을 평가하였다. 강우추정 기법 개발 및 성능 비교를 위해서 2018년 광덕산 이중편파 레이더 자료를 이용하였다. 다양한 이중편파 매개변수 조합을 레이더 강우추정 기법의 입력변수로 적용하였다. 기존 연구의 사용되어 온 ZR관계식의 매개변수를 또한 강우사상과 이중편파 매개변수 조합을 이용하여 추정하였다. 기계학습을 적용한 레이더 강우추정 기법이 ZR관계식보다 상관계수와 제곱근오차를 기준으로 높은 강우추정 정확도를 보였다. 특히 개발된 강우추정 기법은 호우사상에서 높은 정확도를 보이는 것을 확인 할 수 있었다. 적용된 기계학습 기법 중에서는extreme learning machine이 레이더 강우추정기법 개발에 가장 적합한 것으로 나타났다.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
제8권2호
/
pp.351-358
/
2018
Reinforcement learning is a machine learning method which aims to determine a policy to get optimal actions in dynamic and stochastic environments. But reinforcement learning has high computational complexity and needs a lot of time to get solution, so it is not easily applicable to uncertain and continuous environments. To tackle the complexity problem, AC (actor-critic) method is used and it separates an action-value function into a value function and an action decision policy. Also, in transfer learning method, the knowledge constructed in one environment is adapted to another environment, so it reduces the time to learn in a reinforcement learning method. In this paper, we present AC method and transfer learning method to solve the problem of a reinforcement learning method. Finally, we analyze the case study which a transfer learning method is used to solve BS(base station) switching problem in wireless access networks.
본 연구는 이러닝에 있어서 디지털스토리텔링 기법을 적용함으로써 얻어지는 긍정적 학습효과를 학습동기 유발에 중점을 두고 연구한다. 또한, 연구결과를 통하여 이러닝 환경에서 디지털스토리텔링 기법이 활발히 차용될 수 있는 시작점을 제시하고자 한다. 다양한 학습에 있어서 스토리텔링의 긍정적인 역할은 이미 검증되어왔으며, 현재 이 분야의 연구자들은 학습효과를 높이는 스토리텔링의 공연적 차원을 포착한 비디오, 참여적인 역동적 형태의 기술을 통한 디지털스토리텔링을 발전시키기 위한 문턱에 와 있다. 이러닝과 스토리텔링 간의 큰 그림 안에서, 본 연구는 개별 과목의 지식을 전달하기에 적합한 실제의 디지털 스토리텔링 기법을 제시하고 이러한 기법을 통하여 얻어지는 학습효과를 설문을 통하여 검증한다. 설문을 통하여, 본 연구는 다음과 같은 주요 발견을 할 수 있었다: 학습자들은 이러닝 학습자료에 디지털 스토리텔링 기법이 쓰일 때 보다 많이 동기부여가 되었다. 이것은 ARCS 이론의 4 카테고리-주의력, 관련성, 자신감, 만족감-분야에서 SPSS 10.0을 이용하여 분석한 결과 빈도 및 T-Test에서 디지털 스토리텔링 기법이 쓰일 때 모두 고르게 긍정적인 결과를 보임으로써 결론에 도달하게 된 것이다. 본 연구의 남은 과제는 스토리텔링 기법의 실제 재현기법을 개발하고 이를 통한 학습효과의 증진을 계속 검증하는 것이다.
Journal of the Korea Institute of Information and Communication Engineering
/
제16권12호
/
pp.2785-2791
/
2012
In this paper, a method for automatic classification of learning objects is proposed for effective management and reuse of learning contents. Proposed method will create cohesion of learning objects using cases of learning objects and perform automatic classification of learning objects by measuring their relationship based on cohesion. Application of proposed method to learning management system has the advantage of reducing the costs for developing learning contents. Simulation has shown the average accuracy of 28.20% with probability-based method and 56.38% with cohesion-based method. Simulation has proved that the method proposed in this paper is effective in automatic classification of learning objects.
Proceedings of the Korea Information Processing Society Conference
/
한국정보처리학회 2020년도 추계학술발표대회
/
pp.881-882
/
2020
최근 딥 러닝 (deep learning) 기술의 큰 발전으로 기존 기계 학습 분야의 기술들이 성공적으로 해결하지 못하던 많은 문제들을 해결할 수 있게 되었다. 이러한 딥 러닝의 학습 과정은 매우 많은 연산을 요구하기에 다수의 노드들로 모델을 학습하는 분산 학습 (distributed training) 기술이 연구되었다. 대표적인 분산 학습 기법으로 파라미터 서버 기반의 분산 학습 기법들이 있으며, 이 기법들은 파라미터 서버 노드가 학습의 병목이 될 수 있다는 한계를 갖는다. 본 논문에서는 이러한 파라미터 서버 병목 문제를 해결하는 파라미터 샤딩 기법에 대해 소개하고, 각 기법 별 학습 성능을 비교하고 그 결과를 분석하였다.
E-learning is a new paradigm of education using Internet media. E-learning is rapidly expanding, since it is not restricted by time and space. However, due to the lack of standardization in e-learning, learning contents are developed redundantly. SCORM has been proposed to address this standardization problems. The mere learning contents are shared, the higher the reusability of contents becomes. Therefore, it is needed to develop methods or tools to help educators or content producers to create a learning course easily. In this paper, we propose an association method that could help educators or content producers to efficiently generate learning courses for a subject. The association method, a learning course generation method suggested by this paper, makes use of existing learning courses and learning contents to create new learning courses suitable to a subject. The association method analyzes statistical information of leaning objects derived from existing learning courses and measures coherence between learning objects to create a learning course. The association method suggested by this paper not only supports educators or content producers for easy generation of learning course but also offers a guideline for developing learning courses.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
/
pp.207-210
/
2002
진화와 학습 사이의 상호 연관성을 연구하기 위해 인공 진화기법(artificial evolutionary algorithm)과 신경회로망(neural networks)을 이용한 학습 기법들이 사용되어 왔다. 신경 회로망 구조를 가지는 이동 로봇의 제어기의 구조와 파라미터를 결정하기 위한 방법으로 진화적 학습(evolutionary learning) 방법이 제안되었다. 제안된 방법에서 진화적 학습은 실제 로봇을 통해 on-line 방식으로 이루어지며, 장애물 회피 문제를 통해 유용성을 검증하고 진화 과정에 학습이 미치는 영향을 살펴보았다. 그리고 수학적으로 제시되기 힘든 진화 학습의 평가에 설계자의 개입을 허용하는 인터액티브 진화 알고리즘(interactive evolutionary algorithm)방법을 모색해 보았다.
Proceedings of the Korea Information Processing Society Conference
/
한국정보처리학회 2023년도 추계학술발표대회
/
pp.722-723
/
2023
연합학습은 중앙 서버에서 데이터를 수집하는 방식이 아닌 로컬 디바이스 또는 클라이언트에서 학습을 진행하고 중앙 서버로 모델 업데이트만 전송하는 분산 학습 기법으로 데이터 보안 및 개인정보보호를 강화하는 동시에 효율적인 분산 학습을 수행할 수 있다. 그러나, 연합학습 대부분의 시나리오는 클라이언트의 서로 다른 분포 형태인 non-IID 데이터를 대상으로 학습함에 따라 중앙집중식 모델에 비하여 낮은 성능을 보이게 된다. 이에 본 연구에서는 연합학습 모델의 성능을 개선하기 위하여 non-IID 의 환경에서 참여 후보자 중에서 적합한 클라이언트 선택의 최적화 기법을 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.