• Title/Summary/Keyword: 학습조직화

Search Result 176, Processing Time 0.026 seconds

World Representation Using Complex Network for Reinforcement Learning (복잡계 네트워크를 이용한 강화 학습에서의 환경 표현)

  • 이승준;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.622-624
    • /
    • 2004
  • 강화 학습(Reinforcement Learning)을 실제 문제에 적용하는 데 있어 가장 큰 문제는 차원성의 저주(Curse of dimensionality)였다 문제가 커짐에 따라 목적을 이루기 위해서 더 많은 단계의 판단이 필요하고 이에 따라 문제의 해결이 지수적으로 어려워지게 된다. 이를 해결하기 위해 문제를 여러 단계로 나누어 단계별로 학습하는 계층적 강화 학습(Hierarchical Reinforcement Learning)이 제시된 바 있다 하지만 대부분의 계층적 강화 학습 방법들은 사전에 문제의 구조를 아는 것을 전제로 하며 큰 사이즈의 문제를 간단히 표현할 방법을 제시하지 않는다. 따라서 이들 방법들도 실제적인 문제에 바로 적용하기에는 적합하지 않다. 최근 이루어진 복잡계 네트워크(Complex Network)에 대한 연구에 착안하여 본 논문은 자기조직화하는 생장 네트워크(Self organizing growing network)를 기반으로 한 간단한 환경 표현 모델을 사용하는 강화 학습 알고리즘을 제안한다 네트웍은 복잡계 네트웍이 갖는 성질들을 유지하도록 자기 조직화되고, 노드들 간의 거리는 작은 세상 성질(Small World Property)에 따라 전체 네트웍의 큰 사이즈에 비해 짧게 유지된다. 즉 판단해야할 단계의 수가 적게 유지되기 때문에 이 방법으로 차원성의 저주를 피할 수 있다.

  • PDF

Analysis of Classification Characteristics for Rainfall-runoff and TOC Variation according to the Change of Map Size and Array using SOM (SOM 적용을 위한 Map Size와 Array의 변화에 따른 강우-유출 및 TOC관계 분석)

  • Park, Sung-Chun;Kim, Yong-Gu;Roh, Kyong-Bum;Lee, Han-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2066-2070
    • /
    • 2008
  • 본 연구는 인공신경망(Artificial Neural Networks: ANNs)기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론을 이용한다. 자기조직화 특성을 이용하여 스스로 학습이 가능하고, 구조상 수행이 빨라 학습 단계에 소요되는 시간을 줄 일 수 있는 장점을 가진 자기조직화 이론을 도입하고, 수질자료 중 전체 유기물의 양을 나타내며 난분해성 물질에 대한 해석이 가능하고 재현성이 탁월한 TOC 와 강우-유출량 자료의 분포적 양상과 특징을 분석하여 예측을 위한 모형화 과정에 기여하고자 한다. 최적의 Map Size와 Map Array 결정을 위해 수집된 강우와 유출량자료 및 TOC 자료에 대해 Garcia의 경험식을 이용하여 Map을 구성하는 단위구조의 총 수(M)를 산정하여 M값에 따른 종방향 및 횡방향 크기를 결정하는 다수의 Map 크기를 검토하고, 또한 Map 배열은 2차원 배열의 사각형배열(Rectangular array)과 육각형배열(Hexagonal array)에 대해서도 복합적으로 검토하여 최적의 특성조건을 결정하여 강우-유출 및 TOC 관계의 분할특성을 분석한다.

  • PDF

Bilingual Lexicon Extraction Using Self-Organizing Maps (자기조직화 지도를 이용한 이중언어사전 자동 구축)

  • Seo, Hyeong-Won;Cheon, Minah;Kim, Jae-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.802-805
    • /
    • 2015
  • 본 논문은 인공신경망(artificial neural network)의 한 종류인 자기조직화 지도(self-organizing map)를 이용하여 비교말뭉치(comparable corpora)로부터 이중언어사전(bilingual lexicon)을 자동으로 구축하는 방법에 대하여 기술한다. 일반적으로 우리가 대상으로 하는 언어 쌍마다 말뭉치 혹은 초기사전과 같은 언어 자원을 수집하고 그것을 필요에 맞게 가공하는 것은 매우 어려운 일이다. 이런 관점에서 볼 때, 비지도학습(unsupervised learning) 방법 중 하나인 자기조직화 지도를 이용하여 사전을 구축하면 다른 방법에 비해 적은 노력으로도 더 높은 성능을 얻을 수 있다. 본 논문에서는 한국어와 불어에 대하여 실험을 하였고, 그 결과 적은 양의 초기사전으로도 주목할 만한 정확도를 얻을 수 있었다. 향후 연구로는 학습 파라미터에 대해 좀 더 다양한 실험을 하고, 다른 언어 쌍으로의 적용 및 기존의 평가사전을 확장하여 더 많은 경우에 대해 실험하는 것을 들 수 있다.

Exploring for Impact of Learning Strategies on Participation Level in Online Collaborative Learning Process (온라인 협력학습 과정의 참여 수준에 대한 학습전략의 영향 탐색)

  • Lee, Eun-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.6
    • /
    • pp.63-72
    • /
    • 2018
  • This study was conducted to explore the impact of learning strategies on the level of participation in the online collaborative learning process. To do this, We studied 91 students who took professorship courses at A university in the Seoul metropolitan area. At the beginning of the semester, the learning strategies were measured through MSLQ, rehearsal, elaboration, organizing, critical thinking, metacognition, learning management, effort control, peer learning, and seeking help. Next, cooperative tasks were carried out to measure the interaction, and group composition consisted of 4-5 persons. The level of participation was measured by scores given to the messages created for interaction. The process of collaborative learning was divided into the steps of identifying learning goals, learning plans, performing individual learning, sharing learning results, and writing reports. The effects of learning strategies on participation level were analyzed through multiple regression analysis (stepwise selection method). As a result, the learning goal step influenced the highest level of metacognition, and the learning plan is the management of the learning time, the demonstration of the learning execution, the adjustment of the effort, the acquisition of help, the collegial learning, Writing was influenced by organization, elaboration, critical thinking, and critical thinking, metacognition, and elaboration.

A Study on Pattern Recognition with Self-Organized Supervised Learning (자기조직화 교사 학습에 의한 패턴인식에 관한 연구)

  • Park, Chan-Ho
    • The Journal of Information Technology
    • /
    • v.5 no.2
    • /
    • pp.17-26
    • /
    • 2002
  • On this paper, we propose SOSL(Self-Organized Supervised Learning) and it's architecture SOSL is hybrid type neural network. It consists of several CBP (Component Back Propagation) neural networks, and a modified PCA neural networks. CBP neural networks perform supervised learning procedure in parallel to clustered and complex input patterns. Modified PCA networks perform it's learning in order to transform dimensions of original input patterns to lower dimensions by clustering and local projection. Proposed SOSL can effectively apply to neural network learning with large input patterns results in huge networks size.

  • PDF

Supervised Kohonen Feature Map Using Higher Order Neuron (고차 뉴런을 이용한 KOHONEN의 자기 조직화 맵)

  • Jung, Jong-Soo;Hagiwara, Massfume
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2656-2659
    • /
    • 2001
  • 본 논문은 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입, 고차 뉴런을 이용한 Kohonen의 자기 조직화 맵을 제안한다. 일반적인 Kohonen Feature Map의 특징은 입력신호를 받아 출력 면(Kohonen Feature Map) 내의 특정한 위치 주위에 집중하는 메커니즘으로 즉, 국소집중 반응을 구하는 구조이다. 본 논문에서는 종래형의 Kohonen Feature Map의 특징을 보유하며 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입하여 국소집중반응 및 특징 축출이 용이하도록 네트워크 구조를 개선한 것이다. 특히, 일차 뉴런의 문제점인 비선형 분리 문제에 대하여 교사 있는 학습기의 Kohonen Feature Map의 입력층에 고차 뉴런을 도입함으로 비선형 분리 가능한 형태의 네트워크 구조로 형성하였다. 그러나, 일반적인 고차 뉴런의 문제점을 보안하기 위해 본 논문에서는 오직 2차 뉴런만을 생성하였으며 중복되는 뉴런을 최대한 억제하였다. 본 제안 모델의 특성을 살펴보기 위해 XOR문제와 20개의 Alphabet을 식별하는 패턴인식 시뮬레이션을 했으며, 본 제안 모델의 범화능력을 알아보기 위하여 Mirror Symmetry를 사용하여 계산기 시뮬레이션을 했다. 그 결과, 본 제안 모델이 종래형의 네트워크 구조보다 뛰어난 인식률을 얻을 수 있었다.

  • PDF

Education Needs Assessment of Managers for Learning Organization in Small and Mum Enterprises (중소기업 학습조직 담당자의 교육 요구조사)

  • Lim, Se-Yung;Yeom, Myeong-Guk
    • 대한공업교육학회지
    • /
    • v.37 no.2
    • /
    • pp.1-19
    • /
    • 2012
  • In this study, to figure out the demands for learning, a survey was conducted on learning organization agents participating in learning organization project supported by public fund, through measuring their awareness level of the role and tasks drawn from the precedent study. This questionnaire was developed with four roles and twenty competencies drawn from the precedent study. After conducting the survey on over 200 small and medium corporations participated in learning organization project, the data was analyzed about the role and competency from 123 answer sheets collected. The results were as following First, the awareness of role importance was higher(4.36) than present level(3.73), and was important in order of innovator, operator, spreader, promoter. Second, in competitive importance of learning organization agents, the role of spreader was high, that of promoter was low. Third, in awareness level of learning organization agents, the demand level was generally high(4.1), but acquired level was generally low, so there was a wide gap between the demand level and acquired level. Forth, From the analysis result of those data about work competency of learning organization agents, learning organization promoter and learning leader, KMS operator ability and outcome were come out to be necessary, and next administrative ability about organization changes were come out to be necessary.

Traffic Attributes Correlation Mechanism based on Self-Organizing Maps for Real-Time Intrusion Detection (실시간 침입탐지를 위한 자기 조직화 지도(SOM)기반 트래픽 속성 상관관계 메커니즘)

  • Hwang, Kyoung-Ae;Oh, Ha-Young;Lim, Ji-Young;Chae, Ki-Joon;Nah, Jung-Chan
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.649-658
    • /
    • 2005
  • Since the Network based attack Is extensive in the real state of damage, It is very important to detect intrusion quickly at the beginning. But the intrusion detection using supervised learning needs either the preprocessing enormous data or the manager's analysis. Also it has two difficulties to detect abnormal traffic that the manager's analysis might be incorrect and would miss the real time detection. In this paper, we propose a traffic attributes correlation analysis mechanism based on self-organizing maps(SOM) for the real-time intrusion detection. The proposed mechanism has three steps. First, with unsupervised learning build a map cluster composed of similar traffic. Second, label each map cluster to divide the map into normal traffic and abnormal traffic. In this step there is a rule which is created through the correlation analysis with SOM. At last, the mechanism would the process real-time detecting and updating gradually. During a lot of experiments the proposed mechanism has good performance in real-time intrusion to combine of unsupervised learning and supervised learning than that of supervised learning.

콘텐츠연재 / 디지털콘텐츠 기업, '리스크는 줄이고, 수익은 극대화'

  • O, Ik-Jae
    • Digital Contents
    • /
    • no.5 s.120
    • /
    • pp.128-131
    • /
    • 2003
  • 디지털콘텐츠를 제작해 수익을 창출하고자 하는 기업들. 기업을 운영하면서 경영과 투자유치, 조직관리, 각종 법제도에 대한 배경 지식을 갖고 있어야 한다. 이번 호에서는 콘텐츠 기업의 '학습조직화'와 '효율적 조직운영'에 대한 제안과 계약 및 저작권법 등 관련법률에 대한 배경지식의 필요성에 대해 얘기하도록 하겠다.

  • PDF

New Usage of SOM for Genetic Algorithm (유전 알고리즘에서의 자기 조직화 신경망의 활용)

  • Kim, Jung-Hwan;Moon, Byung-Ro
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.440-448
    • /
    • 2006
  • Self-Organizing Map (SOM) is an unsupervised learning neural network and it is used for preserving the structural relationships in the data without prior knowledge. SOM has been applied in the study of complex problems such as vector quantization, combinatorial optimization, and pattern recognition. This paper proposes a new usage of SOM as a tool for schema transformation hoping to achieve more efficient genetic process. Every offspring is transformed into an isomorphic neural network with more desirable shape for genetic search. This helps genes with strong epistasis to stay close together in the chromosome. Experimental results showed considerable improvement over previous results.