본 연구에서는 학습자 행동모델을 이용하여 개별적인 학습 환경을 제공할 수 있는 적응적 하이퍼미디어 학습 시스템을 제안하였다. 본 시스템에서는 학습자의 학습행동정보를 실시간으로 추적하여 관리할 수 있는 LBML을 제안하였다. 제안 시스템은 학습행동정보 수집시스댐과 적용적 학습지원시스템으로 구성된다. 학습행동정보 수집시스템은 웹 2.0기술을 이용하여 SCORM CMI 데이타 모델을 기반으로 학습자의 학습행동정보를 실시간으로 수집한다. 수집된 학습행동정보는 LBML 스키마를 기반으로 개별 학습자의 LBML 인스턴스로 저장된다. 적웅적 학습지원시스댐에서는 LBML 인스턴스를 분석하여 학습자의 반웅에 대한 즉각적인 피드백을 제공할 수 있는 규칙기반 학습지원모률과 상호작용적 학습지원모듈을 개발하였다.
웹을 기반으로 하는 e-러닝에 대한 교육적 수요는 증가하고 있다. 이와 동시에, 학습 공간으로서의 사이버 공간의 활용에 대한 고민도 증가하였다. 전통적인 학습활동을 사이버 공간에 복제하려 했던 고전적 방식이 e-러닝 또는 사이버 학습이 아니라는 사실을 확인하기 시작했기 때문이다. e-러닝의 가치가 강조됨에도 불구하고, 실제 사이버 공간에서 일어나는 학습자의 특성과 학습활동이 구체적으로 어떻게 일어나는 지에 대한 탐색은 미흡하다. 산재한 정보를 스스로 가공한 지식, '학습하는 방법을 학습'하는 것이라는 개념들이 제시됨에도 불구하고, 사이버 공간에 산재한 정보, 학습하는 방법의 학습, 그리고 사이버 공간의 학습특성에 대한 논란은 여전하다. 본 연구에서는 실제 사이버 학습 사이트를 이용하고 있는 학습자들의 행동을 중심으로, 학습자의 특성을 탐색하였다. 사이버 공간에서 보이는 스스로 학습하는 방법이 무엇인지 확인하고 이것이 다양한 학습자 유형으로 구분되는 지를 확인하고자 하였다. 연구대상이 된 사이버 학습 사이트는 서울, 부산, 대구, 광주 교육청에서 운영하는 사이버 가정 학습관이었다. 총 1535명의 사이버 가정 학습관 이용자들의 특성이 분석되었다. 사이버 가정학습관 이용자들의 행동특성은 9개의 요인-놀이 활동, 공동 경험, 현실 정체, 공동 성취, 개인주의, 경쟁 지향, 성취감, 편리성(조작 용이), 생생함-으로 구분되었다. 9개의 활동 요인을 기준으로 하여 확인된 학습자 유형은 4가지로 나타났다. 4가지 학습자 유형은 각각 독야청청형, 동고동락형, 의무방어형, 희희낙낙형으로 명명되었다. 이들 유형은 학습 활동 정도 및 사이트 이용 행동, 학습 스타일(사이버 학습 활동 양식)에서 서로 차이가 있었다. 본 연구는 기존의 이론적인 모델에 기초하여 임의적으로 구분된 사이버 학습자 유형 구분이 아닌, 실제 학습 활동을 탐색하였다는 측면에서 의미가 있다. 특히, 기존의 오프라인 학습 이론 및 학습자 특성 연구를 사이버 학습에 그대로 적용할 것이 아니라 사이버 공간의 특성이 실제 학습 활동에서 어떻게 나타났는지를 밝히려고 했다는데 그 의의가 있다. 향후, 사이버 학습자 유형에 따른, 사이버 학습활동의 촉진방안이나 학습 효과의 차이를 높일 수 있는 구체적인 학습 시스템의 설계 및 운영 모델에 대한 탐색이 필요할 것이다.
강화학습은 에이전트(agent)가 주어진 환경(environment)과의 상호작용을 통해서 상태(state)를 변화시켜가며 최대의 보상(reward)을 얻을 수 있도록 최적의 행동(action)을 학습하는 기계학습법을 의미한다. 최근 알파고와 같은 게임뿐만 아니라 자율주행 자동차, 로봇 제어 등 다양한 분야에서 널리 사용되고 있다. 상수도관망 분야의 경우에도 펌프 운영, 밸브 운영, 센서 최적 위치 선정 등 여러 문제에 적용되었으나, 설계에 강화학습을 적용한 연구는 없었다. 설계의 경우, 관망의 크기가 커짐에 따라 알고리즘의 탐색 공간의 크기가 증가하여 기존의 최적화 알고리즘을 이용하는 것에는 한계가 존재한다. 따라서 본 연구는 강화학습을 이용하여 상수도관망의 구성요소와 환경요인 간의 복잡한 상호작용을 고려하는 설계 방법론을 제안한다. 모델의 에이전트를 딥 강화학습(Deep Reinforcement Learning)으로 구성하여, 상태 및 행동 공간이 커 발생하는 고차원성 문제를 해결하였다. 또한, 해당 모델의 상태 및 보상으로 절점에서의 압력 및 수요량과 설계비용을 고려하여 적절한 수량과 수압의 용수 공급이 가능한 경제적인 관망을 설계하도록 하였다. 모델의 행동은 실제로 공학자가 설계하듯이 절점마다 하나씩 차례대로 다른 절점과의 연결 여부를 결정하는 것으로, 이를 통해 관망의 레이아웃(layout)과 관경을 결정한다. 본 연구에서 제안한 방법론을 규모가 큰 그리드 네트워크에 적용하여 모델을 검증하였으며, 고려해야 할 변수의 개수가 많음에도 불구하고 목적에 부합하는 관망을 설계할 수 있었다. 모델 학습과정 동안 에피소드의 평균 길이와 보상의 크기 등의 변화를 비교하여, 제안한 모델의 학습 능력을 평가 및 보완하였다. 향후 강화학습 모델을 통해 신뢰성(reliability) 또는 탄력성(resilience)과 같은 시스템의 성능까지 고려한 설계가 가능할 것으로 기대한다.
유역 특히 상습침수지구의 통합관리는 유역이라는 한정된 범위 내에서 물에 영향을 미치거나 물에 의하여 영향을 받는 모든 인간 활동과 자연현상을 통합적으로 고려하는 것이다. 이러한 관점에서 유역관리는 유역 차원에서 물을 경제적이고 공평하게 관리하고 분배하여 수자원에 대한 장기적이고 지속가능한 해결방안을 마련하는 것이다. 여기에는 정부, 시민사회 및 기업 행위자가 사회경제적 개발목표와 정책형성, 집행계획을 수립하는 것으로부터 시작된다. 유역관리를 위한 의사결정들은 행위자들과의 영향으로 수정되며, 이런 과정에서 토지와 수자원에서 분쟁이 발생하며, 수자원 관리자는 자연현상, 물 사용, 재정적, 인적자원 및 외부적인 요인으로 인해 목적을 달성하는데 부합하지 않을 수도 있다. 효과적인 유역관리를 위해서는 제약조건하에서 수자원 관리자가 의사결정에 정보를 주고 주요 행위자들과 협력을 통해서 이루어 질 수 있다. 본 논문에서는 유역관리를 위한 의사결정을 행위자기반모형(Agent based Model, ABM)으로 이해하고자 하며, ABM은 유역관리의 이해당사자간의 정책과정을 도출하고 다양한 유역관리 대안을 평가하고 유역관리의 영향을 설명하는 모델이다. 본 모형은 관측자료를 통해 상향식 접근법으로 가능한 많은 세부사항을 모의할 수 있다. 분석과정은 자료의 수집, 모델 확립, 모델의 개발, 통계자료 수집 및 모델의 결과와 실제 시스템의 보충된 관측자료를 비교하는 검증 순으로 진행되며, 본 모델에서의 행위자는 과거의 행동으로부터 주위 환경의 반응하는 패턴을 확인하고 개발하며, 이러한 패턴은 정책들을 구별하기 위해서 이용되며, 이러한 과정에서 강화학습이 이루어진다. 이를 통해 행위자의 익숙한 방식의 합리적인 행동과 정책들의 상관관계를 평가할 수 있으며, 강화학습을 통해 실제적인 통계적인 모델이 가능하다.
유역관리는 유역이라는 한정된 범위 내에서 물에 영향을 미치거나 물에 의하여 영향을 받는 모든 인간 활동과 자연현상을 통합적으로 고려하는 것이다. 이러한 관점에서 유역관리는 유역 차원에서 물을 경제적이고 공평하게 관리하고 분배하여 수자원에 대한 장기적이고 지속가능한 해결 방안을 마련하는 것이다. 여기에는 정부, 시민사회 및 기업 행위자가 사회경제적 개발목표와 정책 형성, 집행계획을 수립하는 것으로부터 시작된다. 유역관리를 위한 의사결정들은 행위자들과의 영향으로 수정되며, 이런 과정에서 토지와 수자원에서 분쟁이 발생하며, 수자원 관리자는 자연현상, 물 사용, 재정적, 인적자원 및 외부적인 요인으로 인해 목적을 달성하는데 부합하지 않을 수도 있다. 효과적인 유역관리를 위해서는 제약조건 하에서 수자원 관리자가 의사결정에 정보를 주고 주요 행위자들과 협력을 통해서 이루어 질 수 있다. 본 논문에서는 유역관리를 위한 의사결정을 행위자기반모형(Agent based Model, ABM)으로 이해하고자 하며, ABM은 유역관리의 이해당사자간의 정책과정을 도출하고 다양한 유역관리 대안을 평가하고 유역관리의 영향을 설명하는 모델이다. 본 모형은 관측자료를 통해 상향식 접근법으로 가능한 많은 세부사항을 모의할 수 있다. 분석과정은 자료의 수집, 모델 확립, 모델의 개발, 통계 자료 수집 및 모델의 결과와 실제 시스템의 보충된 관측자료를 비교하는 검증 순으로 진행되며, 본 모델에서의 행위자는 과거의 행동으로부터 주위 환경의 반응하는 패턴을 확인하고 개발하며, 이러한 패턴은 정책들을 구별하기 위해서 이용되며, 이러한 과정에서 강화학습이 이루어진다. 이를 통해 행위자의 익숙한 방식의 합리적인 행동과 정책들의 상관관계를 평가할 수 있으며, 강화학습을 통해 실제적인 통계적인 모델이 가능할 것이다.
컴퓨터 네트워크의 발전에 의해 학습 공간의 시공간적인 확대와 교육 현장에서 교수-학습 과정에 대한 새로운 교수방법을 요구되었고, 유무선 방송, 인터넷 등을 이용하여 다양한 형태의 원격교육이 구체화되어 왔다. 하지만, 현재 운영되는 대부분의 원격교육시스템은 실질적인 학습 상황에서 단방향적인 개별 학습 형태를 보이고 있고, 사용자간의 쌍방향 상호작용을 위해서는 교수자나 학습자에게 일정 수준이상의 기술적 소양과 경제적 부담을 요구한다. 또한 교수자에게는 교수-학습 상황에서 발생하는 학습자 행동에 대한 실시간적인 모니터링과 학습자의 학습과정에 대한 평가의 어려움을, 학습자에게는 자기 반성의 기회를 제대로 제공하지 못하는 문제점을 안고 있다. 이에 본 연구에서는 원격교육에서의 협동학습 지원, 사용자의 기술적, 경제적 부담의 제거, 학습 전(全) 과정에 대한 원활한 모니터링과 피드백 기회의 제공을 목적으로 원격협동학습 시스템을 설계하고, 이를 개발하였다. 본 연구에 의해 개발된 원격협동학습 시스템은 원격협동학습을 지원하는 네트워크 화이트보드, 학습 과정 및 결과를 자연어로 저장하는 저장 모듈, 그리고 저장된 학습 스크립트 파일을 해석하여 재생하는 스크립트 인터프리터로 구성되었다. 네트워크 화이트보드는 소프트웨어적으로 구현되어 부가적인 장치가 불필요하고, 통신 서버를 분산하여 서버 구축에 대한 부담을 제거하였고, 학습 내용 화면을 대화창으로 사용하여 사용자의 사용 편리성을 제고하였다. 또한 원격학습의 장(場)에 교수자가 참여하여 실시간적 모니터링이 가능하고, 학습의 전(全) 과정 및 결과를 저장한 자연어 스크립트 파일에 의해서도 학습자 행동에 대한 모니터링이 가능하다. 저장된 자연어 스크립트 파일은 구현된 인터프리터를 이용한 재생뿐 아니라, 파일 자체만으로도 학습과정을 판독할 수 있고, 스크립트 파일에 대한 해석은 교수자에게는 학습자의 학습 과정에 대한 평가 및 피드백의 근거를, 학습자에게는 자신의 학습 행동에 대한 반성의 기회를 제공한다. 본 시스템은 기존의 원격교육시스템에 비해 장비 및 인터페이스 측면에서 간소화되었고, 원격교육에 면대면 학습 개념을 근사적으로 접목시킨 교수 모델로서의 충분한 가치를 제공하나, 실제적인 학습 적용과 효과에 있어서의 타당성은 차후 검증이 있어야 하고, 또한, 이에 따른 시스템에 대한 지속적인 보완도 필요하다.
가상 로봇의 행동 진화를 위해서 규칙 구성자와 연결 구성자를 구성하여 분류 규칙과 진화 신경망을 형성하는 혼합형 행동 진화 모델(Hybrid Behavior Evolution Model)을 제안한다. 본 모델에서는 행동 지식을 두 수준에서 표현하였다. 상위 수준에서는 규칙 구성자와 연결 구성자를 구성하여 표현력을 향상시켰다. 하위 수준에서는 행동 지식을 비트 스트링 형태의 염색체로 표현하여, 이들 염색체를 대상으로 유전자 연산을 적용하여 학습을 수행시켰다. 적합도가 최적인 염색체를 추출하여 가상 로봇을 구성하였다. 구성된 가상 로봇은 주변 상황을 인식하여 입력 정보와 규칙 정보를 이용하여 패턴을 분류하였고, 그 결과를 신경망에서 처리하여 행동하였다. 제안된 모델을 평가하기 위해서 HBES(Hybrid Behavior Evolution System)를 개발하여 가상 로봇의 먹이 수집 문제에 적용하였다. 제안한 시스템을 실험한 결과, 동일한 조건의 진화 신경망보다 학습 시간이 적게 소요되었다. 그리고, 규칙이 적합도 향상에 주는 영향을 평가하기 위해서, 학습이 완료된 염색체들에 대해서 규칙을 적용한 것과, 그렇지 않은 것을 각각 수행하여 적합도를 측정하였다. 그 결과, 규칙을 적용하지 않으면 적합도가 저하되는 것을 확인하였다. 제안된 모델은 가상 로봇의 행동 진화에 있어서 기존의 진화 신경망 방식 보다 학습 성능이 우수하고 규칙적인 행동을 수행하는 것을 확인하였다.
동영상 강의 중심의 온라인 학습 형태가 보편화 되고 지속적으로 증가됨에 따라 다양한 교육방법을 적용한 동영상 기반 학습 환경도 학습 효과성을 높이기 위해 변화, 발전하고 있다. 온라인 학습 환경에서의 교육 효과성 측정을 위해 학습자 로그 데이터가 대두되었으며, 학습자 맞춤형 학습 처방을 위해 로그 데이터의 다양한 분석 방법이 중요하다. 이를 위해 본 연구에서는 동영상 기반 학습 환경에서의 학습자 행동 데이터 분석, 머신러닝 기법에 따른 학업성취 예측을 실험을 통해 분석하였다. 분석 결과 각 모델에서 공통적으로 동영상 탐색과 코멘트 작성과 같은 상호작용 행동, 학습자 주도적 학습 행동이 학업성취를 예측하였다. 연구 결과를 토대로 동영상 학습 환경 설계에 있어 시사점을 제공하였다.
본 연구는 원격 학습자의 정보추구행동 모델을 활용하여 국내 대학원 전공 공통 과목 연구방법론을 개발하는 것을 목표로 한다. 국내 대학원 교과목 개설 현황 사례 조사, 재학생의 교과목에 대한 수요 조사를 바탕으로 정보추구를 유인하는 요인과 방해하는 요인을 정리하였다. 재학생이 연구방법론을 통한 정보추구를 유인하는 요인은 학위 취득이며, 방해하는 요인은 학업과 직장을 병행하는 환경으로 나타났다. 연구 결과는 유인 요인을 동기부여로 활용하고 방해 요인을 보완하는 방법으로 교과목을 개발하였다. 연구의 결과는 온라인 교과목 개발을 할 때 학생의 정보추구행동에 대한 이해를 높이고 학생의 정보추구 능력을 기르는 교수학습 전략을 수립하는데 기초자료로 활용될 수 있을 것이다.
인터넷의 등장과 통신기술의 발달로 인해 여러 분야에서 원격 교육이 이루어지고 있다. 이러한 결과로 인해 다양한 멀티미디어 기술을 활용한 컨텐츠의 저작이 일반화되고 있다. 이러한 컨텐츠는 전통적인 교실 수업과 같은 학습 효과를 얻기 위해 상호작용 적인 멀티미디어 컨텐츠를 도입하는 노력을 기울이고 있지만 학습자의 학습 활동과 학습 성실도를 파악하기 어렵다. 본 논문에서는 웹-플래시를 기반으로 한 원격교육 환경에서의 학습 상황 평가 기법과 시스템을 제안한다. 제안한 시스템은 학습자가 학습하는 행동을 트래킹함으로써 학습자에 대한 수업 성실도를 판단하여 학습자 평가에 이용한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.