• Title/Summary/Keyword: 학습용 데이터

Search Result 482, Processing Time 0.029 seconds

A study on improving self-inference performance through iterative retraining of false positives of deep-learning object detection in tunnels (터널 내 딥러닝 객체인식 오탐지 데이터의 반복 재학습을 통한 자가 추론 성능 향상 방법에 관한 연구)

  • Kyu Beom Lee;Hyu-Soung Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.129-152
    • /
    • 2024
  • In the application of deep learning object detection via CCTV in tunnels, a large number of false positive detections occur due to the poor environmental conditions of tunnels, such as low illumination and severe perspective effect. This problem directly impacts the reliability of the tunnel CCTV-based accident detection system reliant on object detection performance. Hence, it is necessary to reduce the number of false positive detections while also enhancing the number of true positive detections. Based on a deep learning object detection model, this paper proposes a false positive data training method that not only reduces false positives but also improves true positive detection performance through retraining of false positive data. This paper's false positive data training method is based on the following steps: initial training of a training dataset - inference of a validation dataset - correction of false positive data and dataset composition - addition to the training dataset and retraining. In this paper, experiments were conducted to verify the performance of this method. First, the optimal hyperparameters of the deep learning object detection model to be applied in this experiment were determined through previous experiments. Then, in this experiment, training image format was determined, and experiments were conducted sequentially to check the long-term performance improvement through retraining of repeated false detection datasets. As a result, in the first experiment, it was found that the inclusion of the background in the inferred image was more advantageous for object detection performance than the removal of the background excluding the object. In the second experiment, it was found that retraining by accumulating false positives from each level of retraining was more advantageous than retraining independently for each level of retraining in terms of continuous improvement of object detection performance. After retraining the false positive data with the method determined in the two experiments, the car object class showed excellent inference performance with an AP value of 0.95 or higher after the first retraining, and by the fifth retraining, the inference performance was improved by about 1.06 times compared to the initial inference. And the person object class continued to improve its inference performance as retraining progressed, and by the 18th retraining, it showed that it could self-improve its inference performance by more than 2.3 times compared to the initial inference.

Construction of Artificial Intelligence Training Platform for Machine Learning Based on Web Radiology_CDM (Web Radiology_CDM기반 기계학습을 위한 인공지능 학습 플랫폼 구축)

  • Noh, Si-Hyeong;Kim, SeungJin;Kim, Ji-Eon;Lee, Chungsub;Kim, Tae-Hoon;Kim, KyungWon;Kim, Tae-Gyu;Yoon, Kwon-Ha;Jeong, Chang-Won
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.487-489
    • /
    • 2020
  • 인공지능 기술을 도입한 의료분야에서 진단 및 예측과 연계한 임상의사결정지원 시스템(CDSS)에 관련된 연구가 활발하게 진행되고 있다. 특히, 인공지능 기술 적용에 가장 많은 이슈를 일으키고 있는 의료영상기반의 질환진단연구가 다양한 제품으로 출시되고 있는 실정이다. 그러나 의료영상 데이터는 일관되지 않은 데이터들로 이루어져 있으며, 그것을 정제하여 연구에 사용하기 위해서는 상당한 시간이 필요한 것이 현실이다. 본 논문에서는 익명화된 데이터를 정제하여 인공지능 연구에 사용할 수 있는 표준화된 데이터 셋을 만들고, 그 데이터를 기반으로 인공지능 알고리즘 개발 연구를 지원하기 위한 원스톱 인공지능학습 플랫폼에 대하여 기술한다. 이를 위해 전체 인공지능 연구프로세스를 보이고 이에 따라 학습을 위한 데이터셋 생성과 인공지능 학습학습용 플랫폼에서 수행되는 수행 과정을 결과로 보인다 제안한 플랫폼을 통해 다양한 영상기반 인공지능 연구에 활용될 것으로 기대하고 있다.

Enhanced Machine Learning Preprocessing Techniques for Optimization of Semiconductor Process Data in Smart Factories (스마트 팩토리 반도체 공정 데이터 최적화를 위한 향상된 머신러닝 전처리 방법 연구)

  • Seung-Gyu Choi;Seung-Jae Lee;Choon-Sung Nam
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.57-64
    • /
    • 2024
  • The introduction of Smart Factories has transformed manufacturing towards more objective and efficient line management. However, most companies are not effectively utilizing the vast amount of sensor data collected every second. This study aims to use this data to predict product quality and manage production processes efficiently. Due to security issues, specific sensor data could not be verified, so semiconductor process-related training data from the "SAMSUNG SDS Brightics AI" site was used. Data preprocessing, including removing missing values, outliers, scaling, and feature elimination, was crucial for optimal sensor data. Oversampling was used to balance the imbalanced training dataset. The SVM (rbf) model achieved high performance (Accuracy: 97.07%, GM: 96.61%), surpassing the MLP model implemented by "SAMSUNG SDS Brightics AI". This research can be applied to various topics, such as predicting component lifecycles and process conditions.

Speech detection from broadcast contents using multi-scale time-dilated convolutional neural networks (다중 스케일 시간 확장 합성곱 신경망을 이용한 방송 콘텐츠에서의 음성 검출)

  • Jang, Byeong-Yong;Kwon, Oh-Wook
    • Phonetics and Speech Sciences
    • /
    • v.11 no.4
    • /
    • pp.89-96
    • /
    • 2019
  • In this paper, we propose a deep learning architecture that can effectively detect speech segmentation in broadcast contents. We also propose a multi-scale time-dilated layer for learning the temporal changes of feature vectors. We implement several comparison models to verify the performance of proposed model and calculated the frame-by-frame F-score, precision, and recall. Both the proposed model and the comparison model are trained with the same training data, and we train the model using 32 hours of Korean broadcast data which is composed of various genres (drama, news, documentary, and so on). Our proposed model shows the best performance with F-score 91.7% in Korean broadcast data. The British and Spanish broadcast data also show the highest performance with F-score 87.9% and 92.6%. As a result, our proposed model can contribute to the improvement of performance of speech detection by learning the temporal changes of the feature vectors.

A Study on Cathodic Protection Rectifier Control of City Gas Pipes using Deep Learning (딥러닝을 활용한 도시가스배관의 전기방식(Cathodic Protection) 정류기 제어에 관한 연구)

  • Hyung-Min Lee;Gun-Tek Lim;Guy-Sun Cho
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.49-56
    • /
    • 2023
  • As AI (Artificial Intelligence)-related technologies are highly developed due to the 4th industrial revolution, cases of applying AI in various fields are increasing. The main reason is that there are practical limits to direct processing and analysis of exponentially increasing data as information and communication technology develops, and the risk of human error can be reduced by applying new technologies. In this study, after collecting the data received from the 'remote potential measurement terminal (T/B, Test Box)' and the output of the 'remote rectifier' at that time, AI was trained. AI learning data was obtained through data augmentation through regression analysis of the initially collected data, and the learning model applied the value-based Q-Learning model among deep reinforcement learning (DRL) algorithms. did The AI that has completed data learning is put into the actual city gas supply area, and based on the received remote T/B data, it is verified that the AI responds appropriately, and through this, AI can be used as a suitable means for electricity management in the future. want to verify.

A Study on the Real-time Word Spotting by Continuous density HMM (연속분포 HMM에 의한 실시간 Word Spotting 에 관한 연구)

  • 서상원
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.92-95
    • /
    • 1995
  • 연속분포 HMM을 사용한 실시간 로봇 암 제어 시스템에 대해 기술하고 있다. 본 시스템은 자연스러운 문장의 로봇 암 제어 명령 발성을 받아 핵심단어 인식의 framework을 통한 명령 인식 및 로봇 제어를 구현하고 있다. 로봇 몸체의 부분, 방향, 각도, 동작명령들에 대해 각기 우향 HMM, 이외의 비 핵심어들에 대해서는 이들을 한데 모아 ergodic형 상태천이를 모델링하는 garbage HMM을 형성했는데, 조사, 감탄사 등을 따로 모은 garbage 모델과, silence 및 배경 잡음에 대한 garbage 모델을 형성, 학습 및 인식에 포함시켜 연결단어 인식을 수행함으로써 핵심단어 인식의 효과를 얻었다. 이때 핵심단어들의 사용에 있어 간단한 문법적 제약을 가정하였다. 남성화자 35명을 대상으로 30개 문형에 대해 데이터 수집용 개념적 문장을 구성하여 음성 데이터를 수집하였다. 학습 화자에 대한 제어 명령 인식률은 95% 이상을 나타내고 있으며, 비 학습화자에 대한 인식율은 90% 이상이다. 또한 학습된 단어외의 비 핵심단어들의 사용에 대해서도 긍정적인 인식 성능을 보였다.

  • PDF

Probability Model-Based Data Mining Approach for Real-Time Processing of Large Data: High-Risk Group Detection and Rule Management System for Patients with High Blood Pressure (대용량 데이터의 실시간 처리를 위한 확률모형 기반 마이닝 기법: 고혈압환자 관리를 위한 고위험군 탐지 및 룰 관리 시스템)

  • Park, Sung-Hyuk;Yang, Kun-Woo
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.469-474
    • /
    • 2010
  • 본 연구에서는 보건기관이 효율적으로 고혈압 관리 대상자를 탐색하고, 고혈압 관련 요인에 대한 지식을 효과적으로 관리할 수 있도록 하는 고혈압 고위험군 추정 모형 및 우선 사업 대상자 탐색 모형을 제안한다. 특히, 대용량 데이터 처리 및 실시간 시스템 운영, 외부 환경 변화를 고려한 자동 학습과 같은 현실적인 제약 조건을 해결하는 모형을 개발하는 것을 주 목표로 한다. 지역 보건소에서 수집된 의료 데이터를 이용하여 최적의 파라미터 값을 설정한 고혈압 고위험군 탐색 모형을 도출하였으며, 모형의 검증을 위하여 고혈압 환자정보로 구성된 평가용 데이터를 사용하여 고혈압 자연 발병률 대비 약 2배 수준으로 향상된 고혈압 환자 예측 정확도가 얻어지는 것을 확인하였다. 시스템 운영과 유비보수 측면에서 현실적으로 중요한 문제인 대용량 데이터 처리 및 외부 환경 변화에 강인한 자동학습 이슈를 해결하기 위한 방안에 대해서도 설명하였다.

  • PDF

The digital transformation of mask dance movement in intangible cultural asset based on human pose recognition (휴먼포즈 인식을 적용한 무형문화재 탈춤 동작 디지털전환)

  • SooHyuong Kang;SungGeon Park;KwangYoung Park
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.678-680
    • /
    • 2023
  • 본 연구는 2022년 유네스코 인류무형유산 대표목록에 등재된 탈춤 동작을 디지털화하여 후속 세대에게 정보를 제공하는 것을 목적으로 한다. 데이터 수집은 국가무형문화제로 지정된 탈춤 단체 13개, 시도무형문화재 단체 5개에 소속된 무형문화재, 전승자 39명이 관성식 모션 캡처 장비를 착용하고, 8대의 카메라를 이용하여 수집하였다. 데이터 가공은 바운딩박스를 수행하였고, 탈춤동작 추정은 YOLO v8을 사용하였고 탈춤 동작 분류는 YOLO v8에 CNN모델을 결합하여 130개의 탈춤을 분류하였다. 연구결과, mAP-50은 0.953, mAP50-95는 0.596, Accuracy 70%를 달성하였다. 향후 학습용 데이터셋 구축량이 늘어나고, 데이터 품질이 개선된다면 탈춤 분류 성능은 더욱 개선될 것이라 기대한다.

A Comparative Study on Game-Score Prediction Models Using Compuational Thinking Education Game Data (컴퓨팅 사고 교육 게임 데이터를 사용한 게임 점수 예측 모델 성능 비교 연구)

  • Yang, Yeongwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.529-534
    • /
    • 2021
  • Computing thinking is regarded as one of the important skills required in the 21st century, and many countries have introduced and implemented computing thinking training courses. Among computational thinking education methods, educational game-based methods increase student participation and motivation, and increase access to computational thinking. Autothinking is an educational game developed for the purpose of providing computational thinking education to learners. It is an adaptive system that dynamically provides feedback to learners and automatically adjusts the difficulty according to the learner's computational thinking ability. However, because the game was designed based on rules, it cannot intelligently consider the computational thinking of learners or give feedback. In this study, game data collected through Autothikning is introduced, and game score prediction that reflects computational thinking is performed in order to increase the adaptability of the game by using it. To solve this problem, a comparative study was conducted on linear regression, decision tree, random forest, and support vector machine algorithms, which are most commonly used in regression problems. As a result of the study, the linear regression method showed the best performance in predicting game scores.

A Study on Deep Learning Methodology for Bigdata Mining from Smart Farm using Heterogeneous Computing (스마트팜 빅데이터 분석을 위한 이기종간 심층학습 기법 연구)

  • Min, Jae-Ki;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.162-162
    • /
    • 2017
  • 구글에서 공개한 Tensorflow를 이용한 여러 학문 분야의 연구가 활발하다. 농업 시설환경을 대상으로 한 빅데이터의 축적이 증가함과 아울러 실효적인 정보 획득을 위한 각종 데이터 분석 및 마이닝 기법에 대한 연구 또한 활발한 상황이다. 한편, 타 분야의 성공적인 심층학습기법 응용사례에 비하여 농업 분야에서의 응용은 초기 성장 단계라 할 수 있다. 이는 농업 현장에서 취득한 정보의 난해성 및 완성도 높은 생육/환경 모델링 정보의 부재로 실효적인 전과정 처리 기술 도출에 소요되는 시간, 비용, 연구 환경이 상대적으로 부족하기 때문일 것이다. 특히, 센서 기반 데이터 취득 기술 증가에 따라 비약적으로 방대해진 수집 데이터를 시간 복잡도가 높은 심층 학습 모델링 연산에 기계적으로 단순 적용할 경우 시간 효율적인 측면에서 성공적인 결과 도출에 애로가 있을 것이다. 매우 높은 시간 복잡도를 해결하기 위하여 제시된 하드웨어 가속 기능의 경우 일부 개발환경에 국한이 되어 있다. 일례로, 구글의 Tensorflow는 오픈소스 기반 병렬 클러스터링 기술인 MPICH를 지원하는 알고리즘을 공개하지 않고 있다. 따라서, 본 연구에서는 심층학습 기법 연구에 있어서, 예상 가능한 다양한 자원을 활용하여 최대한 연산의 결과를 빨리 도출할 수 있는 하드웨어적인 접근 방법을 모색하였다. 호스트에서 수행하는 일방적인 학습 알고리즘과 달리 이기종간 심층 학습이 가능하기 위해선 우선, NFS(Network File System)를 이용하여 데이터 계층이 상호 연결이 되어야 한다. 이를 위해서 고속 네트워크를 기반으로 한 NFS의 이용이 필수적이다. 둘째로 제한된 자원의 한계를 극복하기 위한 메모 공유 라이브러리가 필요하다. 셋째로 이기종간 프로세서에 최적화된 병렬 처리용 컴파일러를 이용해야 한다. 가장 중요한 부분은 이기종간의 처리 능력에 따른 작업을 고르게 분배할 수 있는 작업 스케쥴링이 수행되어야 하며, 이는 처리하고자 하는 데이터의 형태에 따라 매우 가변적이므로 해당 데이터 도메인에 대한 엄밀한 사전 벤치마킹이 수행되어야 한다. 이러한 요구조건을 대부분 충족하는 Open-CL ver1.2(https://www.khronos.org/opencl/)를 이용하였다. 최신의 Open-CL 버전은 2.2이나 본 연구를 위하여 준비한 4가지 이기종 시스템에서 모두 공통적으로 지원하는 버전은 1.2이다. 실험적으로 선정된 4가지 이기종 시스템은 1) Windows 10 Pro, 2) Linux-Ubuntu 16.04.4 LTS-x86_64, 3) MAC OS X 10.11 4) Linux-Ubuntu 16.04.4 LTS-ARM Cortext-A15 이다. 비교 분석을 위하여 NVIDIA 사에서 제공하는 Pascal Titan X 2식을 SLI로 구성한 시스템을 준비하였다. 개별 시스템에서 별도로 컴파일 된 바이너리의 이름을 통일하고, 개별 시스템의 코어수를 동일하게 균등 배분하여 100 Hz의 데이터로 입력이 되는 온도 정보와 조도 정보를 입력으로 하고 이를 습도정보에 Linear Gradient Descent Optimizer를 이용하여 Epoch 10,000회의 학습을 수행하였다. 4종의 이기종에서 총 32개의 코어를 이용한 학습에서 17초 내외로 연산 수행을 마쳤으나, 비교 시스템에서는 11초 내외로 연산을 마치는 결과가 나왔다. 기보유 하드웨어의 적절한 활용이 가능한 심층학습 기법에 대한 연구를 지속할 것이다

  • PDF