• 제목/요약/키워드: 학습용 데이터

검색결과 482건 처리시간 0.023초

인공지능(Artificial Intelligence)과 대학수학교육 (Artificial Intelligence and College Mathematics Education)

  • 이상구;이재화;함윤미
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제34권1호
    • /
    • pp.1-15
    • /
    • 2020
  • 첨단 정보통신기술(ICT)인 인공지능(AI), 사물인터넷(IoT), 빅데이터(Big Data) 등이 사회와 경제 전반에 융합돼 혁신적인 변화가 일어나는 요즘, 헬스케어, 지능형 로봇, 가정용 인공지능 시스템(스마트홈), 공유자동차 등은 이미 우리 생활에 깊이 영향을 미치고 있다. 이미 오래전부터 공장에서는 로봇이 사람 대신 일을 하고 있으며(FA, OA), 인공지능 의사도 병원에서 활동을 하고 있고(Dr. Watson), 인공지능 스피커(기가지니)와 인공지능 비서인 구글 어시스턴트가 자연어생성을 하며 우리를 돕고 있다. 이제 인공지능을 이해하는 것은 필수가 되었으며, 인공지능을 이해하기 위해서 수학의 지식은 선택이 아니라 필수가 되었다. 따라서 이런 일들을 가능하게 해주는 수학지식을 설명하는 역할이 수학자들에게 주어졌다. 이에 본 연구진은 인공지능과 머신러닝(Machine Learning, 기계학습)을 이해하기 위해 필요한 수학 개념을 우리의 실정에 맞게 한 학기(또는 두 학기) 분량으로 정리하여, 무료 전자교과서 "인공지능을 위한 기초수학"을 집필하고, 인공지능 분야에 관심이 있는 다양한 전공의 대학생과 대학원생을 대상으로 하는 강좌를 개설하였다. 본 논문에서는 그 개발과정과 운영사례를 공유한다. http://matrix.skku.ac.kr/math4ai/

플로우 경험의 선행요인들과 시뮬레이션 시스템의 특성이 군(軍)전투시뮬레이션 시스템 사용 의도에 미치는 영향에 관한 실증 분석 (Exploring the Effects of the Antecedents to Flow Experience and the Characteristics of War Simulation Systems on Soldiers' Intentions to Use the War Simulation Systems)

  • 백대관;허용석;김영걸
    • 경영정보학연구
    • /
    • 제16권1호
    • /
    • pp.89-106
    • /
    • 2014
  • 한국군의 군(軍)전투시뮬레이션 시스템은 군장병들이 서로 상호작용을 하며 각각이 지니고 있는 중요 교전 지식을 공유하도록 하는 중요한 학습 수단으로 현재 많은 각광을 받고 있으며, 향후 한국군의 전투 훈련에 있어서도 그 중요성이 지속적으로 증가할 것으로 예상된다. 군(軍)전투시뮬레이션 시스템이 지니고 있는 이러한 중요성에도 불구하고, 남북이 대치하고 있는 상황인 한국에서는 보안을 위해군장병이 아닌 경우 군(軍)전투시뮬레이션 시스템에 대한 접근 자체가 불가능한 현실적인 제약조건으로 인해, 그 동안 군(軍)전투시뮬레이션 시스템에 대한 연구가 매우 미흡했던 것이 사실이다. 따라서, 본 연구는 한국군이 현재 사용하고 있는 일종의 교육용 War Game인 군(軍)전투시뮬레이션 시스템을 대상으로 사용자 중심의 관점에서 플로우 경험의 선행요인들과 군(軍)전투시뮬레이션 시스템의 특성이 군(軍)전투시뮬레이션 시스템 사용 의도 형성에 미치는 영향을 실증 분석하는 것을 연구의 주요 목적으로 한다. 군(軍)전투시뮬레이션을 실제로 사용해본 118명의 군장교들로부터 수집된 설문 데이터에 기반한 본 연구의 실증분석 결과, 군(軍)전투시뮬레이션 시스템의 논리적 현실성과 플로우 경험의 선행 요인들은 군(軍)전투시뮬레이션 시스템 사용 의도 형성에 정(+)의 영향을 미치며, 군(軍)전투시뮬레이션 시스템의 목표 명확성, 피드백 및 임무 난이도는 플로우 경험의 유의한 선행 요인임이 밝혀졌다. 본 논문은 이러한 새로운 실증 분석 결과를 바탕으로 의미 있는 시사점을 제공한다.

딥러닝 모형을 사용한 한국어 음성인식 (Korean speech recognition using deep learning)

  • 이수지;한석진;박세원;이경원;이재용
    • 응용통계연구
    • /
    • 제32권2호
    • /
    • pp.213-227
    • /
    • 2019
  • 본 논문에서는 베이즈 신경망을 결합한 종단 간 딥러닝 모형을 한국어 음성인식에 적용하였다. 논문에서는 종단 간 학습 모형으로 연결성 시계열 분류기(connectionist temporal classification), 주의 기제, 그리고 주의 기제에 연결성 시계열 분류기를 결합한 모형을 사용하였으며. 각 모형은 순환신경망(recurrent neural network) 혹은 합성곱신경망(convolutional neural network)을 기반으로 하였다. 추가적으로 디코딩 과정에서 빔 탐색과 유한 상태 오토마타를 활용하여 자모음 순서를 조정한 최적의 문자열을 도출하였다. 또한 베이즈 신경망을 각 종단 간 모형에 적용하여 일반적인 점 추정치와 몬테카를로 추정치를 구하였으며 이를 기존 종단 간 모형의 결괏값과 비교하였다. 최종적으로 본 논문에 제안된 모형 중에 가장 성능이 우수한 모형을 선택하여 현재 상용되고 있는 Application Programming Interface (API)들과 성능을 비교하였다. 우리말샘 온라인 사전 훈련 데이터에 한하여 비교한 결과, 제안된 모형의 word error rate (WER)와 label error rate (LER)는 각각 26.4%와 4.58%로서 76%의 WER와 29.88%의 LER 값을 보인 Google API보다 월등히 개선된 성능을 보였다.

머신러닝기반 간 경화증 진단을 위한 웹 서비스 개발 (Development of Web Service for Liver Cirrhosis Diagnosis Based on Machine Learning)

  • 노시형;김지언;이충섭;김태훈;김경원;윤권하;정창원
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권10호
    • /
    • pp.285-290
    • /
    • 2021
  • 의료분야에서 인공지능 기술을 도입한 질환 진단 및 예측 연구들이 활발하게 진행되고 있다. 의료영상기반의 인공지능 기술 적용에 가장 많이 활용되고 있는 질환 진단 및 예측에 대한 다양한 제품으로 출시되고 있다. 인공지능은 질병에 대한 진단, 양성과 악성으로 구분되는 질환의 구분, 질병의 위험도에 따른 구별이나 판독에 이용하기 위해 질환부위를 분리하는 등에 적용되고 있다. 최근에는 클라우드기술과 연계하여 서비스 제품으로 활용성이 높아지고 있다. 본 논문에서 다루는 질환 중에 간 질환은 통증이 적어 조기진단이 어려워 그 위험도가 매우 높은 질환이다. 이러한 질환 진단에 비침습적인 진단방법으로 의료영상기반으로 인공지능 기술을 도입하였다. 우리는 임상에서 가장 의미 있는 간 경화증 환자의 판독을 돕기 위한 웹 서비스 개발 내용을 기술한다. 그리고 웹서비스 프로세스를 보이고 각 프로세스의 구동 화면과 최종 결과화면을 보인다. 제안한 서비스를 통해 간 경화증을 조기에 진단하고, 빠른 치료를 통해 환자의 회복에 도움을 줄 수 있을 것으로 기대한다.

신경회로망을 적용한 직류배전시스템의 AFE 정류기 제어에 관한 연구 (Active Front End Rectifier Control of DC Distribution System Using Neural Network)

  • 김성완;전현민;김종수
    • 해양환경안전학회지
    • /
    • 제27권7호
    • /
    • pp.1124-1128
    • /
    • 2021
  • 선박으로부터 발생하는 배출가스에 대한 규제가 강화되고 이를 해결하기위한 대안으로 전기추진시스템의적용이 대형상선에서부터 중·소형선박에 이르기까지 그 사용이 증가되고있다. 전기추진시스템의 효율 향상을 위한 방법으로 발전원의 개선, 배터리·연료전지·태양광 등의 친환경 발전원의 시스템 연계 및 정류기, 전력변환장치, 추진전동기의 개발과 제어방식의 연구를 들 수 있다. 그 중 정류방식에 있어 상천이변압기과 다이오드를 이용하는 방식이 널리 사용되었으나, 직류배전을 이용한 친환경발전원의 계통 연계, 가변속 발전원의 사용, 중·소형 전기추진시스템의 적용을 통해 전력용 반도체 소자를 이용한 AFE정류기에 대한 수요가 증대되고 있다. 이러한 AFE 정류기를 제어하는 방식에 있어 기존의 비례적분제어기가 아닌 신경회로망을 이용한 방식을 본 연구에서는 제안하였다. 기존의 제어기 데이터를 활용하여 Matlab/Simulink를 통해 학습한 신경회로망제어기를 설계하고 PSIM을 통해 설계된 정류시스템에 신경회로망 제어기를 적용하여 부하변동에 따른 직류출력단의 파형과 역률 개선의 유효성을 확인하였다. 이는 공간이 협소한 중소형 친환경 선박의 정류시스템으로써 적용이 가능하다.

79종의 임플란트 식별을 위한 딥러닝 알고리즘 (Deep learning algorithms for identifying 79 dental implant types)

  • 공현준;유진용;엄상호;이준혁
    • 구강회복응용과학지
    • /
    • 제38권4호
    • /
    • pp.196-203
    • /
    • 2022
  • 목적: 본 연구는 79종의 치과 임플란트에 대해 딥러닝을 이용한 식별 모델의 정확도와 임상적 유용성을 평가하는 것을 목적으로 하였다. 연구 재료 및 방법: 2001년부터 2020년까지 30개 치과에서 임플란트 치료를 받은 환자들의 파노라마 방사선 사진에서 총 45396개의 임플란트 고정체 이미지를 수집했다. 수집된 임플란트 이미지는 18개 제조사의 79개 유형이었다. 모델 학습을 위해 EfficientNet 및 Meta Pseudo Labels 알고리즘이 사용되었다. EfficientNet은 EfficientNet-B0 및 EfficientNet-B4가 하위 모델로 사용되었으며, Meta Pseudo Labels는 확장 계수에 따라 두 가지 모델을 적용했다. EfficientNet에 대해 Top 1 정확도를 측정하고 Meta Pseudo Labels에 대해 Top 1 및 Top 5 정확도를 측정하였다. 결과: EfficientNet-B0 및 EfficientNet-B4는 89.4의 Top 1 정확도를 보였다. Meta Pseudo Labels 1은 87.96의 Top 1 정확도를 보였고, 확장 계수가 증가한 Meta Pseudo Labels 2는 88.35를 나타냈다. Top 5 정확도에서 Meta Pseudo Labels 1의 점수는 97.90으로 Meta Pseudo Labels 2의 97.79보다 0.11% 높았다. 결론: 본 연구에서 임플란트 식별에 사용된 4가지 딥러닝 알고리즘은 모두 90%에 가까운 정확도를 보였다. 임플란트 식별을 위한 딥러닝의 임상적 적용 가능성을 높이려면 더 많은 데이터를 수집하고 임플란트에 적합한 미세 조정 알고리즘의 개발이 필요하다.

초등 예비교사가 제작한 과학교육용 앱의 특징과 앱 제작 교육에 대한 초등교사의 생각 (Characteristics of Science Education Apps Developed by Preservice Elementary Teachers and Elementary Teachers' Thoughts about Education Developing Apps)

  • 나지연
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제42권1호
    • /
    • pp.17-33
    • /
    • 2023
  • 본 연구는 초등 예비교사들이 제작한 앱의 특징과 앱 제작 교육에 대한 초등교사의 생각을 살펴보고 이를 통해 초등 예비교사를 위한 TPACK 교육에 시사점을 도출하는 데에 그 목적이 있다. 과학교육 앱 제작 경험을 제공한 사례를 수집하고, 3명의 초등교사를 대상으로 해당 사례에 관한 생각을 조사하였다. 예비교사들이 제작한 앱의 특징을 분석한 결과는 다음과 같다. 첫째, 예비교사들이 앱을 제작하면서 의도한 교육목표는 탐구가 가장 높게 나타났고, 도구형과 학습자·교수자간 상호작용이 일어나는 앱을 제작한 경우가 상대적으로 높게 나타났다. 둘째, 대부분의 예비교사들이 교육과정 목표에 부합하도록 앱을 제작하였으나 건설적 차원과 협력적 차원에서는 낮은 수준의 유형에 해당하는 앱의 특징을 보여 주었다. 예비교사들이 제작한 앱과 앱 제작 교육에 대한 초등교사들의 생각을 분석한 결과는 다음과 같다. 첫째, 초등교사들은 예비교사들이 제작한 앱의 효과성에 가장 낮은 점수를 주었고, 이를 해결하기 위해 교육과정 성취기준 분석과 기 개발된 앱 평가 및 수정 활동을 제안하였다. 둘째, 초등교사들은 예비교사의 TPACK 향상을 위하여 앱을 직접 제작해보는 경험을 제공하는 것이 적절하다고 응답하였다. 셋째, 초등교사들은 앱 인벤터를 활용하여 앱을 제작할 수 있는 블록 코딩 문해력 정도가 예비교사에게 필요하다고 생각하였다. 넷째, 예비교사의 TPACK을 향상시키기 위해 앱 제작 교육에서 모의수업과 앱을 통해 데이터를 수집하고 다루어 보는 경험을 강조할 필요가 있다고 하였다.

지능형 메디컬 기기 개발을 위한 KANO-QFD 모델 제안: AI 기반 탈모관리 기기 중심으로 (A Study on the Development Methodology of Intelligent Medical Devices Utilizing KANO-QFD Model)

  • 김예찬;최광은;정두희
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.217-242
    • /
    • 2022
  • AI 기술이 결합된 지능형 제품은 기술적 차별화를 실현하며 시장 경쟁력을 높일 수 있는 잠재성을 지닌다. 하지만 시장 수용도를 극대화 할 수 있는 AI 기반의 신제품 개발 방법론은 부재하다. 본 연구는 AI 기반의 지능형 제품 개발에 대한 방법론으로서 KANO-QFD 통합 모델을 제안한다. 실증적인 분석을 위한 구체적 사례로 탈모 예측 및 치료 기기에 대한 소비자 요구조건(Customer Requirements)의 유형을 분류하고, 이를 구현하기 위한 기술적 요구사항(Engineering Characteristics)의 상대적 중요도 및 우선순위를 도출하여 지능형 메디컬 신제품 개발의 방향을 제시하였다. 소비자 130명을 대상으로 실시한 설문조사 분석 결과, KANO 카테고리 중 매력적 품질(Attractive Quality) 요소로 미래 탈모 진행 상황에 대한 정확한 예측, 미래 탈모 모습 및 치료 후 개선된 미래 모습을 실물화하여 스마트폰으로 보고, 세련된 디자인, 레이저와 LED 빛 복합 에너지를 이용한 치료 등이 도출되었다. QFD의 품질의 집(House of Quality)을 기반으로 분석한 결과, 탈모 진단 및 예측을 위한 학습 데이터, 두피 스캔용 Micro 카메라 해상도, 탈모 유형 분류 모델, 맞춤화를 위한 개인별 계정 관리, 탈모 진행상황 진단 모델 순으로 상대적 중요도 및 우선순위가 도출되었다. 본 연구는 기존에 선행되지 않았던 AI 기반의 지능형 메디컬 제품 개발에 대한 방향을 제시하였다는 면에서 의의를 지닌다.

화생방 오염확산 시나리오 분석 시스템 구축 및 활용 (Development and Application of a Scenario Analysis System for CBRN Hazard Prediction)

  • 이병헌;서지윤;남현우
    • 한국시뮬레이션학회논문지
    • /
    • 제33권3호
    • /
    • pp.13-26
    • /
    • 2024
  • 화생방 확산 예측 모델은 전쟁 상황에서 생화학 작용제 및 방사능 물질을 활용한 공격 시 사건 발생 시간, 위치, 작용제 종류 및 투발 수단과 기상정보의 필수 시나리오 정보와 지형 및 건물정보를 바탕으로 피해 예측 정보를 생성하여 보다 나은 지휘관의 결심을 돕는 시스템이다. 국방과학연구소에서 개발한 화생방 보고관리 및 모델링 S/W 시스템(Nuclear, Biological, and Chemical Reporting And Modeling S/W System)은 화생방 사건 분석을 위해 독자적으로 개발된 모델로 여러 군사작전과 훈련 계획 수립을 지원한다. 본 논문에서는 NBC_RAMS의 오염확산 및 피해 예측 핵심 엔진을 사용하여 다양한 화생방 시나리오가 반영된 대용량 오염확산 예측 결과를 생성하고 분석할 수 있는 화생방 오염확산 시나리오 분석 시스템을 소개하고 이 시스템의 시나리오 입력정보 요소인 사건, 기상, 지형 및 건물정보를 상세히 설명하고 이에 대한 활용방안을 기술하였다. 실사용 사례로 화생방 오염확산 시나리오 분석 시스템을 활용하여 생성된 대용량 데이터를 인공지능 기술로 학습하여 오염운의 원점을 추적하는 기술과 화생방 탐지 센서 최적의 위치를 선정하는 기술 개발 사례를 소개하고자 한다. 해당 시스템을 통해 인공지능에 특화된 화생방 상황 분석 자료를 생성할 수 있으며 화생방 야전 상황 예측 및 분석으로 군사작전 지원 등의 다방면으로 활용이 가능할 것으로 기대된다.

빌딩의 지속가능 에너지환경 분석 및 평가를 위한 기초 연구 : 주거용 건물의 에너지환경 실적정보를 중심으로 (A Basic Study for Sustainable Analysis and Evaluation of Energy Environment in Buildings : Focusing on Energy Environment Historical Data of Residential Buildings)

  • 이군재
    • 한국산학기술학회논문지
    • /
    • 제18권1호
    • /
    • pp.262-268
    • /
    • 2017
  • 최근 건물의 에너지 소비량이 전체 에너지 소비량의 약 20.5%를 차지하면서 건물의 에너지 고효율과 저소비에 대한 관심이 높이지고 있다. 또한 에너지 분석 및 평가에 다양한 연구가 이루어지고 있다. 건물의 초기설계 단계에서 에너지 분석 및 평가를 수행하고 적용할 경우 매우 효과적인 것으로 알려져 있다. 그러나 초기설계 단계에서는 창면적비, 외피면적 등 개괄적인 수준의 정보를 이용하여 에너지성능을 평가하기 때문에 자재 및 설비 등의 상세정보가 포함된 설계를 기준으로 평가하는 실시설계 단계의 결과와 많은 차이를 보일 수밖에 없다. 지금까지 대부분의 연구들은 건물에 설치되는 자재 및 설비 등에 대한 상세정보가 명확해지는 실시설계 단계에서의 분석 및 평가에 관한 것으로 초기설계 단계에서 이들 정보를 보완하는 연구는 미흡하다. 따라서 건물의 생애주기 동안 발생되는 에너지환경 정보를 구축하여 확률/통계적 방법으로 초기설계 단계에서 분석/평가에 정확한 정보를 제공할 수 있다면 에너지환경 분석의 정확성을 향상 시킬 수 있을 것이다. 그러나 아직까지 국내에서 에너지 사용에 대한 실적정보가 구축된 사례가 없다. 따라서 본 연구에서는 에너지환경 실적정보 구축을 위해 에너지환경 분석에 대해 고찰을 수행하고 분석하였다. 그리고 연구의 결과로 건물의 생애주기 정보 구축에 활용할 수 있는 정보분류체계와 정보 개념모델, 그리고 에너지환경 정보의 취득 및 제공을 위한 서비스 개념모델을 제시하여 향후 실적정보 시스템 개발 연구의 기초 자료로 활용하도록 하였다. 본 연구의 결과는 실적정보 지원 관리시스템 구축에 활용되어 초기설계 단계에서 입력정보를 보완하여 분석/평가의 신뢰성을 높일 수 있을 것이다. 만약 실적정보가 구축된다면 초기설계 단계에서 에너지환경 분석 및 평가를 위한 확률/통계 혹은 인공지능 등의 방법에 학습데이터로 활용될 수 있을 것이다.