DOI QR코드

DOI QR Code

Development and Application of a Scenario Analysis System for CBRN Hazard Prediction

화생방 오염확산 시나리오 분석 시스템 구축 및 활용

  • Byungheon Lee ;
  • Jiyun Seo (Agency for Defense Developement) ;
  • Hyunwoo Nam
  • 이병헌 (국방과학연구소) ;
  • 서지윤 ;
  • 남현우 (국방과학연구소)
  • Received : 2024.07.18
  • Accepted : 2024.08.23
  • Published : 2024.09.30

Abstract

The CBRN(Chemical, Biological, Radiological, and Nuclear) hazard prediction model is a system that supports commanders in making better decisions by creating contamination distribution and damage prediction areas based on the weapons used, terrain, and weather information in the events of biochemical and radiological accidents. NBC_RAMS(Nuclear, Biological and Chemical Reporting And Modeling S/W System) developed by ADD (Agency for Defense Development) is used not only supporting for decision making plan for various military operations and exercises but also for post analyzing CBRN related events. With the NBC_RAMS's core engine, we introduced a CBR hazard assessment scenario analysis system that can generate contaminant distribution prediction results reflecting various CBR scenarios, and described how to apply it in specific purposes in terms of input information, meteorological data, land data with land coverage and DEM, and building data with pologon form. As a practical use case, a technology development case is addressed that tracks the origin location of contaminant source with artificial intelligence and a technology that selects the optimal location of a CBR detection sensor with score data by analyzing large amounts of data generated using the CBRN scenario analysis system. Through this system, it is possible to generate AI-specialized CBRN related to training and analysis data and support planning of operation and exercise by predicting battle field.

화생방 확산 예측 모델은 전쟁 상황에서 생화학 작용제 및 방사능 물질을 활용한 공격 시 사건 발생 시간, 위치, 작용제 종류 및 투발 수단과 기상정보의 필수 시나리오 정보와 지형 및 건물정보를 바탕으로 피해 예측 정보를 생성하여 보다 나은 지휘관의 결심을 돕는 시스템이다. 국방과학연구소에서 개발한 화생방 보고관리 및 모델링 S/W 시스템(Nuclear, Biological, and Chemical Reporting And Modeling S/W System)은 화생방 사건 분석을 위해 독자적으로 개발된 모델로 여러 군사작전과 훈련 계획 수립을 지원한다. 본 논문에서는 NBC_RAMS의 오염확산 및 피해 예측 핵심 엔진을 사용하여 다양한 화생방 시나리오가 반영된 대용량 오염확산 예측 결과를 생성하고 분석할 수 있는 화생방 오염확산 시나리오 분석 시스템을 소개하고 이 시스템의 시나리오 입력정보 요소인 사건, 기상, 지형 및 건물정보를 상세히 설명하고 이에 대한 활용방안을 기술하였다. 실사용 사례로 화생방 오염확산 시나리오 분석 시스템을 활용하여 생성된 대용량 데이터를 인공지능 기술로 학습하여 오염운의 원점을 추적하는 기술과 화생방 탐지 센서 최적의 위치를 선정하는 기술 개발 사례를 소개하고자 한다. 해당 시스템을 통해 인공지능에 특화된 화생방 상황 분석 자료를 생성할 수 있으며 화생방 야전 상황 예측 및 분석으로 군사작전 지원 등의 다방면으로 활용이 가능할 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 2020년도 정부의 재원으로 연구하였음(관리번호 912873001)

References

  1. Open MET Data Portal [Climate Statistical Analysis: Climatological Normals: Climatological Normals in Korea] (n.d.). https://data.kma.go.kr/climate/average430Years/selectAverage30YearsKoreaList.do?pgmNo=188
  2. Im, C., Yoon, Y., Park, C., Na, J. (2003). Development of a chemical accident response information system. 2003 Spring Conference of the Korean Institute of Industrial Safety Conference. 39-42
  3. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin (2017). Attention is all you need. Advances in nural information processing systems, 30.
  4. Baines, W. D. & James, D. F. 1994 Evaporation of a droplet on a surface. Industrial & Engineering Chemistry Research 33, 411-416
  5. Carman, P. C. (1937). Fluid flow through granular beds. Transactions of the Institution of Chemical Engineers, 15, 150-166.
  6. Chang, J. C., Franzese, P., Chayantrakom, K., & Hanna, S. R. (2003). Evaluations of CALPUFF, HPAC, and VLSTRACK with two mesoscale field datasets. Journal of Applied Meteorology, 42(4), 453-466.
  7. Draxler, R. R. (1979). Estimating vertical diffusion from routine meteorological tower measurements. Atmospheric Environment (1967), 13(11), 1559-1564.
  8. Environmental Protection Agency (2020, October 21) Dispersion modeling systems relevant to Homeland Security Preparedness and response. EPA.
  9. Jang, H. D., Kwon, S., Nam, H. & Chang, D. E. (2024). Chemical Gas Source Localization with Synthetic Time Series Diffusion Data Using Video Vision Transformer. Applied Sciences, 14(11), 4451
  10. Klise, K. A., Nicholson, B.L., & Laird, C. D. (2017). Sensor placement optimization using Chama (No. SAND-2017-11472). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
  11. Kozeny, J. (1927). Ueber kapillare Leitung des Wassers im Boden. Sitzungsberichte der Akademie der Wissenschaften in Wien, 136, 271-306.
  12. Ku, H., Seo, J., & Nam, H. (2023). A study on transport and dispersion of chemical agent according to lagrangian puff and particle models in NBC_RAMS. Journal of the Korea Institute of Military Science and Technology, 26(1), 102-112
  13. Nam, J., Lee, C. (2021). Real-time prediction of urban flow and dispersion. Journal of Mechanical Science and Technology, 35, 4565-4574
  14. Oxford, Sean M. (2016) NATO Allied Medical Publication 7.5 (AMEDP 7.5) NATO Planning Guide for the estimation of CBRN casualties. Institute for Defense Analyses Alexandria Va Alexandria United States
  15. Pirhalla, (2020) M. Dispersion Modeling Systems Relevant to Homeland Security Preparedness and Response. U.S. EPA Office of Research and Development, Washington, DC, EPA/600/R-20/338
  16. Roberts, I. D., & Griffiths, R. F. (1995). A model for the evaporation of droplets from sand. Atmospheric Environment, 29(11), 1307-1317.
  17. Son, J., Kang, M., Lee, B., & Nam, H. (2024). Source localization of the chemical gas dispersion using recursive tracking with transformer. IEEE Access, 12, 40105-40113.
  18. Vreman, A. (2004). An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Physics of Fluids, 16(10), 3670-3681
  19. Zeng, X., Pielke, R. A., & Eykholt, R. (1993). Chaos theory and its applications to the atmosphere. Bulletin of the American Meteorological Society, 74(4), 631-644.
  20. Zhu, Y., Gan, J., Ma, L., Feng, X., Liu, Z., Lin, Y., & Wu, W. (2024). Numerical and experimental studies on flow characteristics and wind comfort assessment for the open decks of a cruise ship. Ocean Engineering, 309, 118393.