Proceedings of the Korean Information Science Society Conference
/
2008.06c
/
pp.100-104
/
2008
교육용 소프트웨어 산업이 급속히 발전하면서 온라인 게임을 플랫폼으로 하는 다양한 교육용 게임이 개발되고 있다. 현재 대부분 교육용 게임 시스템은 온라인 게임의 학습도구와 웹을 기반으로 하는 부가적 교육 학습도구로 이중화 되어 개발되고 있다. 하지만 온라인 게임의 학습 데이터 결과와 웹의 학습 데이터 결과가 일치화 되지 않아 학습자에게 올바른 학습 결과를 줄 수 없을 뿐만 아니라 게임 시스템의 학습과정에 따른 레벨 시스템을 적용하기가 어렵다. 본 논문에서는 이러한 비동기적 데이터 처리방식을 온라인 게임 시스템과 웹의 학습과정의 분기 조건에 필요한 학습결과 데이터만을 동기화 처리하는 학습 데이터 동기화 처리 방식을 구현하였다. 이러한 학습결과 데이터 동기화 처리는 위와 같은 문제점으로 다양한 학습 콘텐츠들이 온라인화 하지 못했던 문제점을 해결하고, 향후 통합 교육용 시스템과 다중 교육용 게임 시스템으로 개발 될 때 좀 더 효과적인 학습 시스템으로 개발될 수 있는 학습 데이터 처리 방식이 될 것이다.
Kim, Youngrang;Woo, Junghoon;Lee, Jaehwan;Shin, Ji Sun
Journal of the Korea Institute of Information and Communication Engineering
/
v.23
no.1
/
pp.13-19
/
2019
The accuracy of machine learning is greatly affected by amount of learning data and quality of data. Collecting existing Web-based learning data has danger that data unrelated to actual learning can be collected, and it is impossible to secure data transparency. In this paper, we propose a method for collecting data directly in parallel by blocks in a block - chain structure, and comparing the data collected by each block with data in other blocks to select only good data. In the proposed system, each block shares data with each other through a chain of blocks, utilizes the All-reduce structure of Parallel-SGD to select only good quality data through comparison with other block data to construct a learning data set. Also, in order to verify the performance of the proposed architecture, we verify that the original image is only good data among the modulated images using the existing benchmark data set.
Journal of the Korean Society for Library and Information Science
/
v.54
no.2
/
pp.419-434
/
2020
The purpose of the study is to design and propose metadata standard for building AI training dataset of landmark images. In order to achieve the purpose, we first examined and analyzed the state of art of the types of image retrieval systems and their indexing methods, comprehensively. We then investigated open training dataset and machine learning tools for image object recognition. Sequentially, we selected metadata elements optimized for the AI training dataset of landmark images and defined the input data for each element. We then concluded the study with implications and suggestions for the development of application services using the results of the study.
This study is empirical research to enhance understanding of AI (artificial intelligence) training data project in South Korea. It primarily focuses on the various concerns regarding data quality from policy-executing institutions, data construction companies, and organizations utilizing AI training data to develop the most reliable algorithm for society. For academic contribution, this study suggests a theoretical foundation and research model for understanding AI training data quality and its antecedents, as well as the unique data and ethical aspects of AI. For this purpose, this study proposes a research model with important antecedents related to AI training data quality, such as data attribute factors, data building environmental factors, and data type-related factors. The study collects 393 sample data from actual practitioners and personnel from companies building artificial intelligence training data and companies developing artificial intelligence services. Data analysis was conducted through Fuzzy Set Qualitative Comparative Analysis (fsQCA) and Artificial Neural Network analysis (ANN), presenting academic and practical implications related to the quality of AI training data.
Recently, there is an increasing movement to increase the value of AI learning data and to secure high-quality data based on previous research on AI learning data in all areas of society. Therefore, quality management is very important in construction projects to secure high-quality data. In this paper, quality management to secure high-quality data when building AI learning data and improvement plans for each construction process are presented. In particular, more than 80% of the data quality of unstructured data built for AI learning is determined during the construction process. In this paper, we performed quality inspection of image/video data. In addition, we identified inspection procedures and problem elements that occurred in the construction phases of acquisition, data cleaning, labeling, and models, and suggested ways to secure high-quality data by solving them. Through this, it is expected that it will be an alternative to overcome the quality deviation of data for research groups and operators participating in the construction of AI learning data.
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.297-298
/
2020
본 논문에서는 머신러닝 학습에 있어 데이터 전처리의 중요성과 기존 데이터 전처리 기능을 가진 교육용 실습 플랫폼 서비스의 단점은 개선할 수 있는 데이터 전처리 학습을 위한 교육용 블록코딩 기반 실습 플랫폼을 제안한다. 머신러닝 모델의 학습데이터는 데이터 전처리에 따라 모델의 정확도에 큰 영향을 미치므로 데이터를 다양하게 활용하기 위해서는 전처리의 필요성을 깨닫고 과정을 정확하게 이해해야 한다. 따라서 데이터를 처리하는 과정을 이해하고 전처리를 직접 실행해 볼 수 있는 교육용 프로그래밍 언어 기반 D.I.Y 실습 플랫폼을 구현한다.
Proceedings of the Acoustical Society of Korea Conference
/
1995.06a
/
pp.100-104
/
1995
일반적으로 화자적응화는 이미 학습되어 있는 불특정 화자 모델을 표준모델로 하고 소량의 적응화용 발화로 추가적인 학습을 실시하여 특정화자 모델의 성능에 가깝게 하는 기술로서 연속음성 인식에 있어서 매우 중요하다. ML 추정법을 이용한 화자적응화는 카테고리마다 모델의 학습패턴들을 다수개 준비한 후 학습시에 일괄적으로 적용시켜 모델 파라메터를 추정 갱신하므로 추가되는 화자데이터에 대해 데이터를 모두 공급하여야 한다. 본 연구에서는 문발화 데이터의 음절단위를 자동추출한 후 추가되는 화자데이터가 주어질 때 마다 적응화할 수 있는 화자적응화 방법을 검토하였다. 이 방법은 문발화 데이터를 잘라내지 않고 음절 단위를 자동추출시켜 추가 데이터마다 최대 사후확률 추정법을 이용하여 적응화 시키는 것으로 수소의 데이터로서도 적응화를 가능하게 하는 것이다. 본 연구에서 사용되는 음성데이터는 신문사설에서 발췌한 연속음성 10문장을 사용하고, 이 음성 데이터중 6명분은 HMM 학습용으로 하고 나머지 3명분은 적응화용 및 평가용 데이터로 사용하였다. 6명의 화자를 DDCHMM으로 학습하고 나머지 3명분을 MAP법으로 적응화시켰다. 그 결과 적응전과 비교해 볼 때 약 32%의 인식율 향상을 얻을 수 있었다.
Proceedings of the Korean Society for Information Management Conference
/
2002.08a
/
pp.185-190
/
2002
웹상의 교육용 학습물에 대한 탐색과 기술을 위한 다수의 표준적 메타데이터들이 개발되어왔다. 그러나 이러한 메타데이터들은 학습물이 지닌 고유한 자료적 특성 및 멀티미디어와 관련한 기술에 있어서 여러 가지 문제들을 지녀왔다. 애플리케이션 프로화일은 기존의 표준적 메타데이터 시스템들이 지닌 경직성에서 벗어나 다양한 응용환경을 지원하기 위한 방편으로 점차 그 이용이 확대되어 가고 있다. 이 연구에서는 교육용 학습물의 기술을 위한 애플리케이션 프로화일 작성을 위하여 웹상에서 이용 가능한 멀티미디어 형식의 학습물에 대한 기술과 탐색에 필수적인 엘리먼트들을 선별하고 이에 상응하는 XML스키마작성를 모색하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.283-286
/
2021
4차 산업혁명을 맞이해 최근 산업 및 기술 영역에서는 인공지능을 이용한 생산력 향상, 자동화 등 딥러닝의 보편화가 빠르게 진행되고 있다. 또한, 딥러닝의 성능을 도출하기 위해서는 수많은 양의 학습용 데이터가 필요하며 그 데이터의 양은 딥러닝 모델의 성능과 정비례한다. 이에 본 작품은 최신형 영상처리 Library인 Albumentations를 이용하여 영상처리 알고리즘을 이용하여 이미지를 증강하고, 이미지 데이터 크롤링 기능을 통해 Web에서 영상 데이터를 수집을 자동화하며, Label Pix를 연동하여 수집한 데이터를 라벨링 한다. 더 나아가 라벨링 된 데이터의 증강까지 포함하여 다양한 증강 자동화를 한 인터페이스에 집적시켜 딥러닝 모델을 생성할 때 데이터 수집과 전처리를 수월하게 한다. 또한, Neural Net 기반의 AdaIN Transfer를 이용하여 이미지를 개별적으로 학습하지 않고 Real time으로 이미지의 스타일을 옮겨올 수 있도록 하여 그림 데이터의 부족 현상을 해결한다.
We think that it is important to develop the metadata for educational game. Because they are applicable to game contents, separate learning sources and studying components in the game-based LCMS. But markets of eduainment and educational games are newborn field, so systematic development of metadata is not advanced yet. Therefore in this paper, we first established the design process of educational game metadata, and then according to the rule, we suggested this as a prototype. And we defined the extracted data as metadata for educational game through inspection of an expert group. If these metadata prototype are operated by adopting through standardization stage of public institutes, we can provide the convenience of searching, managing and recycling these metadata to learner, instructor and the developing institute. And we can also expect the prevention of overlapping investment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.