• Title/Summary/Keyword: 학습용 데이터

Search Result 482, Processing Time 0.024 seconds

Synchronizing Learning Data in Educational Games (교육용 게임에서의 학습 데이터 동기화 처리)

  • Jeon, Seong-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.100-104
    • /
    • 2008
  • 교육용 소프트웨어 산업이 급속히 발전하면서 온라인 게임을 플랫폼으로 하는 다양한 교육용 게임이 개발되고 있다. 현재 대부분 교육용 게임 시스템은 온라인 게임의 학습도구와 웹을 기반으로 하는 부가적 교육 학습도구로 이중화 되어 개발되고 있다. 하지만 온라인 게임의 학습 데이터 결과와 웹의 학습 데이터 결과가 일치화 되지 않아 학습자에게 올바른 학습 결과를 줄 수 없을 뿐만 아니라 게임 시스템의 학습과정에 따른 레벨 시스템을 적용하기가 어렵다. 본 논문에서는 이러한 비동기적 데이터 처리방식을 온라인 게임 시스템과 웹의 학습과정의 분기 조건에 필요한 학습결과 데이터만을 동기화 처리하는 학습 데이터 동기화 처리 방식을 구현하였다. 이러한 학습결과 데이터 동기화 처리는 위와 같은 문제점으로 다양한 학습 콘텐츠들이 온라인화 하지 못했던 문제점을 해결하고, 향후 통합 교육용 시스템과 다중 교육용 게임 시스템으로 개발 될 때 좀 더 효과적인 학습 시스템으로 개발될 수 있는 학습 데이터 처리 방식이 될 것이다.

  • PDF

High-quality data collection for machine learning using block chain (블록체인을 활용한 양질의 기계학습용 데이터 수집 방안 연구)

  • Kim, Youngrang;Woo, Junghoon;Lee, Jaehwan;Shin, Ji Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.13-19
    • /
    • 2019
  • The accuracy of machine learning is greatly affected by amount of learning data and quality of data. Collecting existing Web-based learning data has danger that data unrelated to actual learning can be collected, and it is impossible to secure data transparency. In this paper, we propose a method for collecting data directly in parallel by blocks in a block - chain structure, and comparing the data collected by each block with data in other blocks to select only good data. In the proposed system, each block shares data with each other through a chain of blocks, utilizes the All-reduce structure of Parallel-SGD to select only good quality data through comparison with other block data to construct a learning data set. Also, in order to verify the performance of the proposed architecture, we verify that the original image is only good data among the modulated images using the existing benchmark data set.

A Study on Designing Metadata Standard for Building AI Training Dataset of Landmark Images (랜드마크 이미지 AI 학습용 데이터 구축을 위한 메타데이터 표준 설계 방안 연구)

  • Kim, Jinmook
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.54 no.2
    • /
    • pp.419-434
    • /
    • 2020
  • The purpose of the study is to design and propose metadata standard for building AI training dataset of landmark images. In order to achieve the purpose, we first examined and analyzed the state of art of the types of image retrieval systems and their indexing methods, comprehensively. We then investigated open training dataset and machine learning tools for image object recognition. Sequentially, we selected metadata elements optimized for the AI training dataset of landmark images and defined the input data for each element. We then concluded the study with implications and suggestions for the development of application services using the results of the study.

A Study on the Artificial Intelligence (AI) Training Data Quality: Fuzzy-set Qualitative Comparative Analysis (fsQCA) Approach (인공지능 학습용 데이터 품질에 대한 연구: 퍼지셋 질적비교분석)

  • Hyunmok Oh;Seoyoun Lee;Younghoon Chang
    • Information Systems Review
    • /
    • v.26 no.1
    • /
    • pp.19-56
    • /
    • 2024
  • This study is empirical research to enhance understanding of AI (artificial intelligence) training data project in South Korea. It primarily focuses on the various concerns regarding data quality from policy-executing institutions, data construction companies, and organizations utilizing AI training data to develop the most reliable algorithm for society. For academic contribution, this study suggests a theoretical foundation and research model for understanding AI training data quality and its antecedents, as well as the unique data and ethical aspects of AI. For this purpose, this study proposes a research model with important antecedents related to AI training data quality, such as data attribute factors, data building environmental factors, and data type-related factors. The study collects 393 sample data from actual practitioners and personnel from companies building artificial intelligence training data and companies developing artificial intelligence services. Data analysis was conducted through Fuzzy Set Qualitative Comparative Analysis (fsQCA) and Artificial Neural Network analysis (ANN), presenting academic and practical implications related to the quality of AI training data.

Method for improving video/image data quality for AI learning of unstructured data (비정형데이터의 AI학습을 위한 영상/이미지 데이터 품질 향상 방법)

  • Kim Seung Hee;Dongju Ryu
    • Convergence Security Journal
    • /
    • v.23 no.2
    • /
    • pp.55-66
    • /
    • 2023
  • Recently, there is an increasing movement to increase the value of AI learning data and to secure high-quality data based on previous research on AI learning data in all areas of society. Therefore, quality management is very important in construction projects to secure high-quality data. In this paper, quality management to secure high-quality data when building AI learning data and improvement plans for each construction process are presented. In particular, more than 80% of the data quality of unstructured data built for AI learning is determined during the construction process. In this paper, we performed quality inspection of image/video data. In addition, we identified inspection procedures and problem elements that occurred in the construction phases of acquisition, data cleaning, labeling, and models, and suggested ways to secure high-quality data by solving them. Through this, it is expected that it will be an alternative to overcome the quality deviation of data for research groups and operators participating in the construction of AI learning data.

Data Preprocessing block for Education Programming Language based Deep aI Yourself Hands-on Platform (교육용 프로그래밍 언어 기반 Deep aI Yourself 실습 플랫폼을 위한 데이터 전처리 블록)

  • Lee, Se-Hoon;Kim, Ki-Tae;Baek, Min-Ju;Yoo, Chae-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.297-298
    • /
    • 2020
  • 본 논문에서는 머신러닝 학습에 있어 데이터 전처리의 중요성과 기존 데이터 전처리 기능을 가진 교육용 실습 플랫폼 서비스의 단점은 개선할 수 있는 데이터 전처리 학습을 위한 교육용 블록코딩 기반 실습 플랫폼을 제안한다. 머신러닝 모델의 학습데이터는 데이터 전처리에 따라 모델의 정확도에 큰 영향을 미치므로 데이터를 다양하게 활용하기 위해서는 전처리의 필요성을 깨닫고 과정을 정확하게 이해해야 한다. 따라서 데이터를 처리하는 과정을 이해하고 전처리를 직접 실행해 볼 수 있는 교육용 프로그래밍 언어 기반 D.I.Y 실습 플랫폼을 구현한다.

  • PDF

A Study on Speaker Adaptation of HMM in a Continous Speech Recognition System (HMM을 이용한 연속음성인식 시스템의 화자적응화에 관한 연구)

  • 김상범
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.100-104
    • /
    • 1995
  • 일반적으로 화자적응화는 이미 학습되어 있는 불특정 화자 모델을 표준모델로 하고 소량의 적응화용 발화로 추가적인 학습을 실시하여 특정화자 모델의 성능에 가깝게 하는 기술로서 연속음성 인식에 있어서 매우 중요하다. ML 추정법을 이용한 화자적응화는 카테고리마다 모델의 학습패턴들을 다수개 준비한 후 학습시에 일괄적으로 적용시켜 모델 파라메터를 추정 갱신하므로 추가되는 화자데이터에 대해 데이터를 모두 공급하여야 한다. 본 연구에서는 문발화 데이터의 음절단위를 자동추출한 후 추가되는 화자데이터가 주어질 때 마다 적응화할 수 있는 화자적응화 방법을 검토하였다. 이 방법은 문발화 데이터를 잘라내지 않고 음절 단위를 자동추출시켜 추가 데이터마다 최대 사후확률 추정법을 이용하여 적응화 시키는 것으로 수소의 데이터로서도 적응화를 가능하게 하는 것이다. 본 연구에서 사용되는 음성데이터는 신문사설에서 발췌한 연속음성 10문장을 사용하고, 이 음성 데이터중 6명분은 HMM 학습용으로 하고 나머지 3명분은 적응화용 및 평가용 데이터로 사용하였다. 6명의 화자를 DDCHMM으로 학습하고 나머지 3명분을 MAP법으로 적응화시켰다. 그 결과 적응전과 비교해 볼 때 약 32%의 인식율 향상을 얻을 수 있었다.

  • PDF

Making an Application Profile for Multimedia Instructional Resources (멀티미디어 학습물 탐색을 위한 애플리케이션 프로화일 작성에 관한 연구)

  • 김태문
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2002.08a
    • /
    • pp.185-190
    • /
    • 2002
  • 웹상의 교육용 학습물에 대한 탐색과 기술을 위한 다수의 표준적 메타데이터들이 개발되어왔다. 그러나 이러한 메타데이터들은 학습물이 지닌 고유한 자료적 특성 및 멀티미디어와 관련한 기술에 있어서 여러 가지 문제들을 지녀왔다. 애플리케이션 프로화일은 기존의 표준적 메타데이터 시스템들이 지닌 경직성에서 벗어나 다양한 응용환경을 지원하기 위한 방편으로 점차 그 이용이 확대되어 가고 있다. 이 연구에서는 교육용 학습물의 기술을 위한 애플리케이션 프로화일 작성을 위하여 웹상에서 이용 가능한 멀티미디어 형식의 학습물에 대한 기술과 탐색에 필수적인 엘리먼트들을 선별하고 이에 상응하는 XML스키마작성를 모색하였다.

  • PDF

Development of integrated data augmentation automation tools for deep learning (딥러닝 학습용 집적화된 데이터 증강 자동화 도구 개발)

  • Jang, Chan-Ho;Lee, Seo-Young;Park, Goo-Man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.283-286
    • /
    • 2021
  • 4차 산업혁명을 맞이해 최근 산업 및 기술 영역에서는 인공지능을 이용한 생산력 향상, 자동화 등 딥러닝의 보편화가 빠르게 진행되고 있다. 또한, 딥러닝의 성능을 도출하기 위해서는 수많은 양의 학습용 데이터가 필요하며 그 데이터의 양은 딥러닝 모델의 성능과 정비례한다. 이에 본 작품은 최신형 영상처리 Library인 Albumentations를 이용하여 영상처리 알고리즘을 이용하여 이미지를 증강하고, 이미지 데이터 크롤링 기능을 통해 Web에서 영상 데이터를 수집을 자동화하며, Label Pix를 연동하여 수집한 데이터를 라벨링 한다. 더 나아가 라벨링 된 데이터의 증강까지 포함하여 다양한 증강 자동화를 한 인터페이스에 집적시켜 딥러닝 모델을 생성할 때 데이터 수집과 전처리를 수월하게 한다. 또한, Neural Net 기반의 AdaIN Transfer를 이용하여 이미지를 개별적으로 학습하지 않고 Real time으로 이미지의 스타일을 옮겨올 수 있도록 하여 그림 데이터의 부족 현상을 해결한다.

  • PDF

The development of Metadata Prototype for Educational Game (교육용 게임을 위한 메타데이터 프로토타입 개발)

  • Yoon, Sean-Jeang;Yoon, Tae-Soo
    • Journal of Korea Game Society
    • /
    • v.8 no.1
    • /
    • pp.3-13
    • /
    • 2008
  • We think that it is important to develop the metadata for educational game. Because they are applicable to game contents, separate learning sources and studying components in the game-based LCMS. But markets of eduainment and educational games are newborn field, so systematic development of metadata is not advanced yet. Therefore in this paper, we first established the design process of educational game metadata, and then according to the rule, we suggested this as a prototype. And we defined the extracted data as metadata for educational game through inspection of an expert group. If these metadata prototype are operated by adopting through standardization stage of public institutes, we can provide the convenience of searching, managing and recycling these metadata to learner, instructor and the developing institute. And we can also expect the prevention of overlapping investment.

  • PDF