• Title/Summary/Keyword: 학습온도

Search Result 220, Processing Time 0.027 seconds

The Characteristics of the Learning Performance according to the Indoor Temperature of the Learning Environment and the Color of the Learning Materials (학습 환경의 실내 온도와 학습재료의 색채에 따른 학습수행의 특성)

  • Kim, Boseong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.681-687
    • /
    • 2013
  • This study examined whether the combination of the indoor temperature on the learning environment and the colors of the learning materials affect the learning performance. To do this, the condition of indoor temperature was divided into three conditions: the neutral condition which is the appropriate temperature condition of the learning activities ($22.5{\sim}24^{\circ}C$), the high-temperature condition (> $24^{\circ}C$), and the low-temperature condition (< $22.5^{\circ}C$). In addition, colors of red, blue, black, and green were used as the warm, cold, and neutral colors, and the verbal-working memory task was used as the learning task. As a result, it was not significant differences in the response time of the learning task, whereas, in the accuracy rate of the learning task, the performance was more accurate in red- and black-color conditions. These results could be interpreted as the saliency and color-temperature of the red color, and the familiarity and specificity of the black color.

SmartPhone based LED Learning Lighting System Development (스마트폰 기반의 LED 학습 조명 시스템 개발)

  • Choi, Hyo Hyun;Jo, Dae Hyun;Kim, Jin Il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.135-136
    • /
    • 2015
  • 본 논문에서는 무선 랜(Wi-Fi)을 통하여 학습 환경 구축을 위해 LED 조명 색 온도를 제어하는 방법을 설명 하고, LED 조명을 위한 Android App 개발 과정을 설명한다. 스마트폰과 LED 조명은 Wi-Fi를 통해 통신하며, JAVA언어로 개발한 Android App을 이용하여 학습 주제에 따른 색온도(Color Tempeaure)로 제어하게 되면 LED 조명 색온도가 변경되어 학습 환경 구축이 완료되어, 집중력 향상으로 인한 학습 능률이 증가된다.

  • PDF

Prediction of electricity consumption in A hotel using ensemble learning with temperature (앙상블 학습과 온도 변수를 이용한 A 호텔의 전력소모량 예측)

  • Kim, Jaehwi;Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.319-330
    • /
    • 2019
  • Forecasting the electricity consumption through analyzing the past electricity consumption a advantageous for energy planing and policy. Machine learning is widely used as a method to predict electricity consumption. Among them, ensemble learning is a method to avoid the overfitting of models and reduce variance to improve prediction accuracy. However, ensemble learning applied to daily data shows the disadvantages of predicting a center value without showing a peak due to the characteristics of ensemble learning. In this study, we overcome the shortcomings of ensemble learning by considering the temperature trend. We compare nine models and propose a model using random forest with the linear trend of temperature.

A Simulation Study of Phosphoric Acid Fuel Cell Process Using Back-propagation Neural Network (오류역전파 신경망을 이용한 인산형 연료전지 공정의 전산모사)

  • 이원재;김성준;설용건;이태희
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.17-22
    • /
    • 1994
  • 오류역전파 신경망을 인산형 연료전지의 조업변수인 산소 및 수소 유량, 작동온도에 대하여 학습시켜 연료전지 모델을 구성하였다. 또한 구성된 모델을 이용하여 다양한 조업조건에서의 단위전지 성능을 예측하여 이를 실험결과와 비교하였으며, 학습된 신경망을 ASPEN PLUS의 단위공정으로 도입하여 50kW 출력의 연료전지 공정을 구성한 후 조업변수에 대한 영향을 살펴보았다. 3개의 층으로 구성된 오류역전파 신경망은 학습단계상수와 모멘텀이 각각 0.7 및 0.9인 경우 단위전지 성능곡선을 가장 정확히 학습하였으며, 이에 의하여 구성된 신경망 모델은 수소 및 산소의 유량, 온도의 변화에 따른 단위전지 성능곡선의 변화를 정확히 예측하였다. 연료전지 전체공정의 모사에서는 개질기의 경우 $600^{\circ}C$의 상압에서 수증기/탄화수소 비율이 2.6일 때, 연료전지의 경우 작동온도가 190~20$0^{\circ}C$일 때 연료전지의 출력이 최대값을 나타내었으며, 단위전지의 전기화학적 효율은 약 45%, 수소이용률은 약 61%, 발전시스템 전체의 효율은 18%이었다.

  • PDF

Dam Basin-scale Regionalization of Large-scale Model Output using the Artificial Neural Network (인공신경망모형을 이용한 대규모 대기모형모의결과의 댐유역스케일에서의 지역화기법)

  • Kang, Boo-Sik;Lee, Bong-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.179-183
    • /
    • 2009
  • 본 연구에서는 GCM 기후변화 전망 시나리오를 이용하여 유역단위의 기후변화를 추정하였다. 원시 GCM 시나리오를 지역화 시키기 위해서 인공신경망 모형을 사용하였다. GCM에서 모의되는 강수플럭스, 해면기압, 지표면 근처에서의 일 평균온도, 지표면으로부터 발생하는 잠열플럭스 등과 같은 22개의 변수는 인공신경망의 잠재적 예측인자로 사용되었으며, AWS에서 관측된 강수량과 온도는 예측변수로 사용되었다. 원시 GCM 데이터는 CCCma(Canadian Centre for Climate Modeling and Analysis)에서 제공되는 CGCM3.1/T63 20C3M 시나리오를 사용하였으며, 인공신경망 학습과정에서 사용된 기준시나리오(reference scenario)자료의 기간은 1997년부터 2000년까지의 데이터를 사용하였다. 인공신경망을 학습을 통하여 결정된 각 층사이의 가중치를 이용하여 이산화탄소 배출농도를 가정하여 생성된 CGCM3.1/T63 SRES B1 기후변화시나리오(project scenario)를 인공신경망의 입력값으로 하여 미래의 기온과 강수변화를 전망하였다. 신경망의 학습효과를 높이기 위하여 기온과 강수에 대한 평균 및 누적기간을 각각 일단위와 월단위로 설정하였다. 본 연구에서 사용된 인공신경망은 3층 퍼셉트론(다층 퍼셉트론)을 사용하였으며, 학습방법으로는 역전파알고리즘(back-propagation algorithm)을 이용하였다. 민감도분석을 통하여 선택된 예측인자는 소양강댐유역(1011, 1012소유역)에서의 인공신경망 예측인자로 활용되었으며, 2001년부터 2100년까지의 일 평균온도와 일 강수량의 변화경향을 추정하였다. 1011유역, 1012유역에서는 여름철의 온도변화경향이 겨울철에 비하여 높게 나타났다. 일 평균온도의 통계분석 결과 평균예측오차가 가장 적게 나타나는 지역은 1001유역으로 -0.08로 평균예측오차가 가장 적게 나타났으며, 인공신경망기법을 이용하여 스케일 상세화된 일 평균온도와 관측된 일 평균온도가 얼마나 잘 일치하는지를 확인할 수 있는 1012유역에서 CORR이 0.74로 가장 높게 나타났다.

  • PDF

The Estimation of Arctic Air Temperature in Summer Based on Machine Learning Approaches Using IABP Buoy and AMSR2 Satellite Data (기계학습 기반의 IABP 부이 자료와 AMSR2 위성영상을 이용한 여름철 북극 대기 온도 추정)

  • Han, Daehyeon;Kim, Young Jun;Im, Jungho;Lee, Sanggyun;Lee, Yeonsu;Kim, Hyun-cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1261-1272
    • /
    • 2018
  • It is important to measure the Arctic surface air temperature because it plays a key-role in the exchange of energy between the ocean, sea ice, and the atmosphere. Although in-situ observations provide accurate measurements of air temperature, they are spatially limited to show the distribution of Arctic surface air temperature. In this study, we proposed machine learning-based models to estimate the Arctic surface air temperature in summer based on buoy data and Advanced Microwave Scanning Radiometer 2 (AMSR2)satellite data. Two machine learning approaches-random forest (RF) and support vector machine (SVM)-were used to estimate the air temperature twice a day according to AMSR2 observation time. Both RF and SVM showed $R^2$ of 0.84-0.88 and RMSE of $1.31-1.53^{\circ}C$. The results were compared to the surface air temperature and spatial distribution of the ERA-Interim reanalysis data from the European Center for Medium-Range Weather Forecasts (ECMWF). They tended to underestimate the Barents Sea, the Kara Sea, and the Baffin Bay region where no IABP buoy observations exist. This study showed both possibility and limitations of the empirical estimation of Arctic surface temperature using AMSR2 data.

A Study about Mobile Healthcare System (모바일 헬스케어시스템에 관한 연구)

  • Jin, Kwang-Youn;Choi, Shin-Hyeong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.421-423
    • /
    • 2010
  • 본 논문에서는 특정한 공간에서 학습하는 학습자들의 학습환경을 최적화하여 학습능률을 향상시키기 위한 방안으로서 유비쿼터스 센서네트워크 기술을 활용한 학습지원시스템을 구축한다. 이를 위해 특정 공간에 실내외에 부착된 센서노드를 활용하여 온도, 습도, 조도 등의 정보를 수집하고, 이들 정보와 학습자들로부터 파악한 정보를 분석하여 최적의 학습환경을 조성하기 시스템에 대해 연구한다.

  • PDF

Development and Verification of Smart Greenhouse Internal Temperature Prediction Model Using Machine Learning Algorithm (기계학습 알고리즘을 이용한 스마트 온실 내부온도 예측 모델 개발 및 검증)

  • Oh, Kwang Cheol;Kim, Seok Jun;Park, Sun Yong;Lee, Chung Geon;Cho, La Hoon;Jeon, Young Kwang;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.152-162
    • /
    • 2022
  • This study developed simulation model for predicting the greenhouse interior environment using artificial intelligence machine learning techniques. Various methods have been studied to predict the internal environment of the greenhouse system. But the traditional simulation analysis method has a problem of low precision due to extraneous variables. In order to solve this problem, we developed a model for predicting the temperature inside the greenhouse using machine learning. Machine learning models are developed through data collection, characteristic analysis, and learning, and the accuracy of the model varies greatly depending on parameters and learning methods. Therefore, an optimal model derivation method according to data characteristics is required. As a result of the model development, the model accuracy increased as the parameters of the hidden unit increased. Optimal model was derived from the GRU algorithm and hidden unit 6 (r2 = 0.9848 and RMSE = 0.5857℃). Through this study, it was confirmed that it is possible to develop a predictive model for the temperature inside the greenhouse using data outside the greenhouse. In addition, it was confirmed that application and comparative analysis were necessary for various greenhouse data. It is necessary that research for development environmental control system by improving the developed model to the forecasting stage.

Estimating soil moisture using machine learning approach: A Case Study to Yongdam watershed (기계학습 기반의 토양함수 예측 기법 개발 (용담댐 시험유역을 중심으로))

  • Huy, Nguyen Dinh;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.167-167
    • /
    • 2018
  • 토양수분은 토양에 포함된 평균 수분량을 나타내며 수문 순환 관점에서 매우 중요한 수문변량 중 하나이다. 본 연구에서는 대표적인 기계학습 방법인 Support Vector Machine (SVM)을 이용한 토양 함수 예측 기법을 개발하고자 하며, 예측인자로서 원격 탐측 기반의 토양함수자료, 강수량, 온도 등을 활용하고자 한다. SVM은 Kernel 함수를 이용하여 복잡한 비선형 관계를 선형 가정을 통해서 해석하는 기계학습 방법으로서 전역모델(global model)로서 다양한 수문기상분야에 적용이 이루어지고 있다. SVM의 장점은 일정 부분의 오차를 허용함으로서 모형의 일반화 측면에서 기존 인공신경망(artificial neural network, ANN)에 비해 우수한 성능을 나타내며, 특히 예측모형으로서 적용성이 매우 크다. 본 연구에서는 과거 토양 함수 자료와 강수, 온도, 위성 관측 기반 정보 등을 이용하여 모형을 적합시키고 이를 미계측 유역으로 확장하는데 연구의 목적이 있으며, 본 연구를 통해 제안된 모형은 용담댐 시험유역을 대상으로 적용되며 기존 ANN 모형 및 다중회귀분석 결과와 비교를 통해 모형의 적합성을 평가하고자한다.

  • PDF

Context-Aware Middleware Design for Emotion Feedback of E-Learning Learners (이러닝 학습자의 감정 피드백을 위한 상황인식 미들웨어 설계)

  • Kim, Jin-Bong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.670-672
    • /
    • 2022
  • 이러닝 시스템을 유용하게 활용하려면 학습자의 감정을 인식하여 학습자에게 적절한 피드백을 주는 것이 무엇보다 중요하다. 이러닝 시스템의 학습효율을 높이기 위해서는 학습자의 감정을 인식하여 그에 적절한 피드백을 제공하는 것이 중요하다. 본 논문에서는 학습자에 대한 적절한 피드백을 제공하기 위해서 상황인식 컴퓨팅 기술을 바탕으로 학습자의 감정표현단어를 상황정보로 사용하여 감정을 인식할 수 있는 상황인식 미들웨어로서 EF-CAM을 제안한다. EF-CAM은 감정표현단어의 범주화기술을 기반으로 온톨로지를 구축하여 학습자의 감정을 인식한다. 이러닝 학습자의 감정을 인식하기 위해서 학습자의 감정표현 단어를 상황정보로 사용하고, 학습자의 감정에 영향을 미칠 수 있는 환경정보(온도, 습도, 날씨 등)를 추가하여 인식한다. 학습자의 감정을 표현하기 위해서 OWL 언어를 사용하여 온톨로지를 구축하였다.