• Title/Summary/Keyword: 학습속도

Search Result 1,109, Processing Time 0.028 seconds

Battery State-of-Charge Estimation Using ANN and ANFIS for Photovoltaic System

  • Cho, Tae-Hyun;Hwang, Hye-Rin;Lee, Jong-Hyun;Lee, In-Soo
    • The Journal of Korean Institute of Information Technology
    • /
    • v.18 no.5
    • /
    • pp.55-64
    • /
    • 2020
  • Estimating the state of charge (SOC) of a battery is essential for increasing the stability and reliability of a photovoltaic system. In this study, battery SOC estimation methods were proposed using artificial neural networks (ANNs) with gradient descent (GD), Levenberg-Marquardt (LM), and scaled conjugate gradient (SCG), and an adaptive neuro-fuzzy inference system (ANFIS). The charge start voltage and the integrated charge current were used as input data and the SOC was used as output data. Four models (ANN-GD, ANN-LM, ANN-SCG, and ANFIS) were implemented for battery SOC estimation and compared using MATLAB. The experimental results revealed that battery SOC estimation using the ANFIS model had both the highest accuracy and highest convergence speed.

Performance analysis in automatic modulation classification based on deep learning (딥러닝 기반 자동 변조 인식 성능 분석)

  • Kang, Jong-Jin;Kim, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.427-432
    • /
    • 2021
  • In this paper, we conduct performance analysis in automatic modulation classification of unknown communication signal to identify its modulation types based on deep neural network. The modulation classification performance was verified using time domain digital sample data of the modulated signal, frequency domain data to which FFT was applied, and time and frequency domain mixed data as neural network input data. For 11 types of analog and digitally modulated signals, the modulation classification performance was verified in various SNR environments ranging from -20 to 18 dB and reason for false classification was analyzed. In addition, by checking the learning speed according to the type of input data for neural network, proposed method is effective for constructing an practical automatic modulation recognition system that require a lot of time to learn.

Extracting Neural Networks via Meltdown (멜트다운 취약점을 이용한 인공신경망 추출공격)

  • Jeong, Hoyong;Ryu, Dohyun;Hur, Junbeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1031-1041
    • /
    • 2020
  • Cloud computing technology plays an important role in the deep learning industry as deep learning services are deployed frequently on top of cloud infrastructures. In such cloud environment, virtualization technology provides logically independent and isolated computing space for each tenant. However, recent studies demonstrate that by leveraging vulnerabilities of virtualization techniques and shared processor architectures in the cloud system, various side-channels can be established between cloud tenants. In this paper, we propose a novel attack scenario that can steal internal information of deep learning models by exploiting the Meltdown vulnerability in a multi-tenant system environment. On the basis of our experiment, the proposed attack method could extract internal information of a TensorFlow deep-learning service with 92.875% accuracy and 1.325kB/s extraction speed.

Extraction of Skin Regions through Filtering-based Noise Removal (필터링 기반의 잡음 제거를 통한 피부 영역의 추출)

  • Jang, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.672-678
    • /
    • 2020
  • Ultra-high-speed images that accurately depict the minute movements of objects have become common as low-cost and high-performance cameras that can film at high speeds have emerged. In this paper, the proposed method removes unexpected noise contained in images after input at high speed, and then extracts an area of interest that can represent personal information, such as skin areas, from the image in which noise has been removed. In this paper, noise generated by abnormal electrical signals is removed by applying bilateral filters. A color model created through pre-learning is then used to extract the area of interest that represents the personal information contained within the image. Experimental results show that the introduced algorithms remove noise from high-speed images and then extract the area of interest robustly. The approach presented in this paper is expected to be useful in various applications related to computer vision, such as image preprocessing, noise elimination, tracking and monitoring of target areas, etc.

Framework for Efficient Web Page Prediction using Deep Learning

  • Kim, Kyung-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.165-172
    • /
    • 2020
  • Recently, due to exponential growth of access information on the web, the importance of predicting a user's next web page use has been increasing. One of the methods that can be used for predicting user's next web page is deep learning. To predict next web page, web logs are analyzed by data preprocessing and then a user's next web page is predicted on the output of the analyzed web logs using a deep learning algorithm. In this paper, we propose a framework for web page prediction that includes methods for web log preprocessing followed by deep learning techniques for web prediction. To increase the speed of preprocessing of large web log, a Hadoop based MapReduce programming model is used. In addition, we present a web prediction system that uses an efficient deep learning technique on the output of web log preprocessing for training and prediction. Through experiment, we show the performance improvement of our proposed method over traditional methods. We also show the accuracy of our prediction.

Improved real-time power analysis attack using CPA and CNN

  • Kim, Ki-Hwan;Kim, HyunHo;Lee, Hoon Jae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2022
  • Correlation Power Analysis(CPA) is a sub-channel attack method that measures the detailed power consumption of attack target equipment equipped with cryptographic algorithms and guesses the secret key used in cryptographic algorithms with more than 90% probability. Since CPA performs analysis based on statistics, a large amount of data is necessarily required. Therefore, the CPA must measure power consumption for at least about 15 minutes for each attack. In this paper proposes a method of using a Convolutional Neural Network(CNN) capable of accumulating input data and predicting results to solve the data collection problem of CPA. By collecting and learning the power consumption of the target equipment in advance, entering any power consumption can immediately estimate the secret key, improving the computational speed and 96.7% of the secret key estimation accuracy.

The Improvement of the LIDAR System of the School Zone Applying Artificial Intelligence (인공지능을 적용한 스쿨존의 LIDAR 시스템 개선 연구)

  • Park, Moon-Soo;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1248-1254
    • /
    • 2022
  • Efforts are being made to prevent traffic accidents in the school zone in advance. However, traffic accidents in school zones continue to occur. If the driver can know the situation information in the child protection area in advance, accidents can be reduced. In this paper, we design a camera that eliminates blind spots in school zones and a number recognition camera system that can collect pre-traffic information. It is designed by improving the LIDAR system that recognizes vehicle speed and pedestrians. It collects and processes pedestrian and vehicle image information recognized by cameras and LIDAR, and applies artificial intelligence time series analysis and artificial intelligence algorithms. The artificial intelligence traffic accident prevention system learned by deep learning proposed in this paper provides a forced push service that delivers school zone information to the driver to the mobile device in the vehicle before entering the school zone. In addition, school zone traffic information is provided as an alarm on the LED signboard.

Exploitation of Dual-polarimetric Index of Sentinel-1 SAR Data in Vessel Detection Utilizing Machine Learning (이중 편파 Sentinel-1 SAR 영상의 편파 지표를 활용한 인공지능 기반 선박 탐지)

  • Song, Juyoung;Kim, Duk-jin;Kim, Junwoo;Li, Chenglei
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.737-746
    • /
    • 2022
  • Utilizing weather independent SAR images along with machine learning based object detector is effective in robust vessel monitoring. While conventional SAR images often applied amplitude data from Single Look Complex, exploitation of polarimetric parameters acquired from multiple polarimetric SAR images was yet to be implemented to vessel detection utilizing machine learning. Hence, this study used four polarimetric parameters (H, p1, DoP, DPRVI) retrieved from eigen-decomposition and two backscattering coefficients (γ0, VV, γ0, VH) from radiometric calibration; six bands in total were respectively exploited from 52 Sentinel-1 SAR images, accompanied by vessel training data extracted from AIS information which corresponds to acquisition time span of the SAR image. Evaluating different cases of combination, the use of polarimetric indexes along with amplitude values derived enhanced vessel detection performances than that of utilizing amplitude values exclusively.

Analysis and Design of Cattle Management System based on IoT (사물인터넷 기반 소관리 시스템의 분석 및 설계)

  • Cho, Byung-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.125-130
    • /
    • 2021
  • Implementation of livestock smart-farm can be done more effectively with IoT technology developing. An build of useful stock management system can be possibile if push messages of these judgement are notified on smart-phone after cattle's illness and estrus are judged using IoT technology. These judgement method of cattle's illness and estrus can be done with gathering living stock data using temperature sensor and 3 axis acceleration sensor and sending these data using IoT and internet network into server, and studying AI machine learning using these data. In this paper, to build this cattle management system based on IoT, effective system of the whole architecture is showed. Also an effective analysis and design method to develop this system software will be presented by showing user requirement analysis using object-oriented method, flowchart and screen design.

Deep Learning-based Gaze Direction Vector Estimation Network Integrated with Eye Landmark Localization (딥 러닝 기반의 눈 랜드마크 위치 검출이 통합된 시선 방향 벡터 추정 네트워크)

  • Joo, Heeyoung;Ko, Min-Soo;Song, Hyok
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.748-757
    • /
    • 2021
  • In this paper, we propose a gaze estimation network in which eye landmark position detection and gaze direction vector estimation are integrated into one deep learning network. The proposed network uses the Stacked Hourglass Network as a backbone structure and is largely composed of three parts: a landmark detector, a feature map extractor, and a gaze direction estimator. The landmark detector estimates the coordinates of 50 eye landmarks, and the feature map extractor generates a feature map of the eye image for estimating the gaze direction. And the gaze direction estimator estimates the final gaze direction vector by combining each output result. The proposed network was trained using virtual synthetic eye images and landmark coordinate data generated through the UnityEyes dataset, and the MPIIGaze dataset consisting of real human eye images was used for performance evaluation. Through the experiment, the gaze estimation error showed a performance of 3.9, and the estimation speed of the network was 42 FPS (Frames per second).