• 제목/요약/키워드: 학습성과예측

검색결과 217건 처리시간 0.034초

유전자 알고리즘을 이용한 웨이블릿분석 및 인공신경망기법의 통합모형구축 (A Hybrid System of Wavelet Transformations and Neural Networks Using Genetic Algorithms: Applying to Chaotic Financial Markets)

  • Shin, Taek-Soo;Han, In-Goo
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.271-280
    • /
    • 1999
  • 인공신경망을 시계열예측에 적용하는 경우에 고려되어야 할 문제중, 특히 모형에 적합한 입력변수의 생성이 중요시되고 있는데, 이러한 분야는 인공신경망의 모형생성과정에서 입력변수에 대한 전처리기법으로써 다양하게 제시되어 왔다. 가장 최근의 입력변수 전처리기법으로써 제시되고 있는 신호처리기법은 전통적 주기분할처리방법인 푸리에변환기법(Fourier transforms)을 비롯하여 이를 확장시킨 개념인 웨이블릿변환기법(wavelet transforms) 등으로 대별될 수 있다. 이는 기본적으로 시계열이 다수의 주기(cycle)들로 구성된 상이한 시계열들의 집합이라는 가정에서 출발하고 있다. 전통적으로 이러한 시계열은 전기 또는 전자공학에서 주파수영역분할, 즉 고주파 및 저주파수를 분할하기 위한 기법에 적용되어 왔다. 그러나, 최근에는 이러한 연구가 다양한 분야에 활발하게 응용되기 시작하였으며, 그 중의 대표적인 예가 바로 경영분야의 재무시계열에 대한 분석이다. 전통적으로 재무시계열은 장, 단기의사결정을 가진 시장참여자들간의 거래특성이 시계열에 각기 달리 가격으로 반영되기 때문에 이러한 상이한 집단들의 고요한 거래움직임으로 말미암아 예를 들어, 주식시장이 프랙탈구조를 가지고 있다고 보기도 한다. 이처럼 재무시계열은 다양한 사회현상의 집합체라고 볼 수 있으며, 그만큼 예측모형을 구축하는데 어려움이 따른다. 본 연구는 이러한 시계열의 주기적 특성에 기반을 둔 신호처리분석으로서 기존의 시계열로부터 노이즈를 줄여 주면서 보다 의미있는 정보로 변환시켜줄 수 있는 웨이블릿분석 방법론을 새로운 필터링기법으로 사용하여 현재 많은 연구가 진행되고 있는 인공신경망의 모형결합을 통해 기존연구과는 다른 새로운 통합예측방법론을 제시하고자 한다. 본 연구에서는 제시하는 통합방법론은 크게 2단계 과정을 거쳐 예측모형으로 완성이 된다. 즉, 1차 모형단계에서 원시 재무시계열은 먼저 웨이브릿분석을 통해서 노이즈가 필터링 되는 동시에, 과거 재무시계열의 프랙탈 구조, 즉 비선형적인 움직임을 보다 잘 반영시켜 주는 다차원 주기요소를 가지는 시계열로 분해, 생성되며, 이렇게 주기에 따라 장단기로 분할된 시계열들은 2차 모형단계에서 신경망의 새로운 입력변수로서 사용되어 최종적인 인공 신경망모델을 구축하는 데 반영된다. 기존의 주기분할방법론은 모형개발자입장에서 여러 가지 통계기준치중에서 최적의 기준치를 합리적으로 선택해야 하는 문제가 추가적으로 발생하며, 본 연구에서는 이상의 제반 문제들을 개선시키기 위해 통합방법론으로서 기존의 인공신경망모형을 구조적으로 확장시켰다. 이 모형에서 기존의 입력층 이전단계에 새로운 층이 정의된다. 이렇게 해서 생성된 새로운 통합모형은 기존모형에서 생성되는 기본적인 학습파라미터와 더불어, 본 연구에서 새롭게 제시된 주기분할층의 파라미터들이 모형의 학습성과를 높이기 위해 함께 고려된다. 한편, 이러한 학습과정에서 추가적으로 고려해야 할 파라미터 갯수가 증가함에 따라서, 본 모델의 학습성과가 local minimum에 빠지는 문제점이 발생될 수 있다. 즉, 웨이블릿분석과 인공신경망모형을 모두 전역적으로 최적화시켜야 하는 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 위해서, 최근 local minimum의 가능성을 최소화하여 전역적인 학습성과를 높여 주는 인공지능기법으로서 유전자알고리즘기법을 본 연구이 통합모델에 반영하였다. 이에 대한 실증사례 분석결과는 일일 환율예측문제를 적용하였을 경우, 기존의 방법론보다 더 나운 예측성과를 타나내었다.

  • PDF

기업부실 예측 데이터의 불균형 문제 해결을 위한 앙상블 학습 (Ensemble Learning for Solving Data Imbalance in Bankruptcy Prediction)

  • 김명종
    • 지능정보연구
    • /
    • 제15권3호
    • /
    • pp.1-15
    • /
    • 2009
  • 데이터 불균형 문제는 분류 및 예측 문제에서 하나의 범주에 속하는 표본의 수가 다른 범주들에 속하는 표본 수에 비하여 현저하게 적을 경우 나타난다. 데이터 불균형이 심화됨에 따라 범주 사이의 분류 경계영역이 왜곡되고 결과적으로 분류자의 학습성과가 저하되는 문제가 발생한다. 본 연구에서는 데이터 불균형 문제를 해결하기 위하여 Geometric Mean-based Boosting (GM-Boost) 알고리즘을 제안하고자 한다. GM-Boost 알고리즘은 기하평균 개념에 기초하고 있어 다수 범주와 소수 범주를 동시에 고려한 학습이 가능하고 오분류된 표본에 집중하여 학습을 강화할 수 있는 장점이 있다. 기업부실 예측문제를 활용하여 GM-Boost 알고리즘의 성과를 검증한 결과 기존의Under-Sampling, Over-Sampling 및 AdaBoost 알고리즘에 비하여 우수한 분류 정확성을 보여주었고 데이터 불균형 정도에 관계없이 견고한 학습성과를 나타냈다.

  • PDF

성인 학습자의 학습 추이 분석을 위한 인공지능 기반 알고리즘 모델 개발 및 평가 (Development and evaluation of AI-based algorithm models for analysis of learning trends in adult learners)

  • 정영식;이은주;도재우
    • 정보교육학회논문지
    • /
    • 제25권5호
    • /
    • pp.813-824
    • /
    • 2021
  • A사이버교육시스템 성인학습자의 자기조절학습 관련 학습 추이를 분석하여 교육 성과를 높이기 위해 인공지능을 활용한 알고리즘 모델을 다양하게 설계하고, 그것을 실제 데이터에 적용함으로써 성능을 평가하였다. 이를 위해 A사이버교육시스템에서 115명의 성인학습자의 로그 데이터를 분석하였다. A사이버교육시스템 성인학습자들은 대부분 권장 학습 시간 이상을 학습하였으나, 학기 말에는 권장 학습 시간 대비 실제 학습 시간이 현저하게 감소하였다. VOD 참여율이나 형성평가 참여율, 학습 활동 참여율에서도 학습 후반부에 접어들수록 학습 참여율이 떨어졌다. 따라서 교육 성과를 높이려면 학습 시간이 후반에도 지속될 수 있도록 지원해야 한다 판단하여 후반부에 학습 시간이 떨어지는 학습자를 찾아내기 위해 Tensorflow를 활용한 인공지능 모델을 개발하여 수강 시작 날짜별 학습 시간을 예측하였다. 그 결과, CNN 모델을 활용하여 단일 출력 또는 다중 출력을 예측할 경우 다른 모델에 비해 평균 절대 오차가 가장 낮게 나타났다.

조직의 인적자원 학습 및 성장성과, 재무적 성과와 경영성과 간의 관계에 관한 연구 (Learning & Growth Performance, Financial Performance, and General Performance)

  • 장충석
    • 산학경영연구
    • /
    • 제21권2호
    • /
    • pp.111-136
    • /
    • 2008
  • 균형성과표(BSC) 모형은 기업의 경영성과를 비재무적 지표로서 학습 및 성장성과, 내부 경영프로세스 성과, 고객성과, 재무적 지표로서 재무적 성과를 중심으로 측정하고 평가하는 통합적 성과 측정 시스템이다. 이러한 균형성과표(BSC) 모형은 재무적 성과 지표를 중심으로 기업의 경영성과를 측정하고 평가하는데 있어서 나타나는 한계를 보완하고 종합적으로 측정하고 평가함으로써 합리적인 기업의 성과를 예측하고 측정하는 평가시스템이다. 본 연구에서는 기업이 균형성과표(BSC) 모형을 도입하여 활용하는 경우 도입전과 후의 성과에서 유의미한 차이가 있는지를 구명하고, 비재무적 성과 지표와 재무적 성과 지표, 그리고 전반적인 경영성과 간의 영향관계를 분석하였다. 분석결과 균형성과표(BSC) 모형을 도입하여 활용하는 경우 기업의 학습 및 성장성과에 유의미한 차이가 분석되었으며, 비재무적 성과 지표들은 재무적 성과를 개선하여 전반적인 기업의 경영성과를 향상시키는 것으로 분석되었다.

  • PDF

인공신경망을 활용한 기업실적예측 모델 (Firm's performance prediction model by applying ANN)

  • 이준혁;김갑조;박상성;장동식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.773-776
    • /
    • 2014
  • 최근 기업의 기술력이 기업의 경영성과에 미치는 영향이 증가함에 따라 기업이 보유한 기술적 정보가 경영성과예측에 있어 필수적 요소로 대두되었다. 본 연구에서는 기업의 기술적 정보를 담고 있는 특허정보 및 특허지표를 활용하여 기업의 경영성과를 정량적으로 예측하는 모델을 제안한다. 또 미국 정보통신기업의 재무정보와 특허정보를 활용하여 제안된 예측모델을 구축하고 그 성능을 검증 및 평가하였다. 본 연구에서 제안한 기업실적예측 모델의 구축을 위해 인간의 두뇌가 학습하는 과정을 모방한 인공신경망알고리즘을 활용하였다.

피지컬 컴퓨팅 교육에서 과학적 탐구 태도에 대한 과학경험, 교육지원, 학습몰입의 예측력 규명 (The predictability of science experience, school support and learning flow on the attitude of scientific inquiry in physical computing education)

  • 강명희;장지은;윤성혜
    • 정보교육학회논문지
    • /
    • 제21권1호
    • /
    • pp.41-55
    • /
    • 2017
  • 최근 관심을 받고 있는 피지컬 컴퓨팅 교육은 하드웨어와 소프트웨어 요소를 통합하여 의미 있고 창의적인 산출물을 개발함으로써, 과학적 탐구 태도를 함양시키는 데 효과적인 교육의 형태이다. 이에 본 연구는 피지컬 컴퓨팅 교육에서 주요 학습성과 변인으로 거론되는 과학적 탐구 태도를 교육성과 변인으로 상정하고, 이를 예측하는 요인을 규명하고자 과학경험, 교육지원, 학습몰입을 예측변인으로 상정하여 이들 변인의 예측력을 확인하였다. 이를 위해 초등학교 4학년에서 6학년인 영재교육프로그램 참가자 64명을 대상으로 피지컬 컴퓨팅 교육을 실시하여 자료를 수집하였다. 수집된 자료는 기술통계, 상관분석, 다중회귀분석 및 매개분석을 통해 분석되었다. 연구 결과, 과학경험과 학습몰입은 교육성과인 과학적 탐구 태도를 유의하게 예측하는 것으로 나타났다. 또한 학습몰입은 과학경험과 과학적 탐구 태도, 교육지원과 과학적 탐구 태도 사이를 매개하는 것으로 나타났다. 이를 기반으로 피지컬 컴퓨팅 교육에서 과학적 탐구 태도 향상을 위해 과학경험 기회의 제공, 긍정적 교육지원의 필요, 학습몰입 촉진을 위한 전략이 필요함을 제안하였다.

가강수량과 인공신경망을 이용한 중규모수치예보의 강수확률예측 개선기법 (Improving Probability of Precipitation of Meso-scale NWP Using Precipitable Water and Artificial Neural Network)

  • 강부식;이봉기
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1027-1031
    • /
    • 2008
  • 본 연구는 한반도 영역을 대상으로 2001년 7, 8월과 2002년 6월로 홍수기를 대상으로 RDAPS 모형, AWS, 상층기상관측(upper-air sounding)의 자료를 이용하였다. 또한 수치예보자료를 범주적 예측확률로 변환하고 인공신경망기법(ANN)을 이용하여 강수발생확률의 예측정확성을 향상시키는데 있다. 신경망의 예측인자로 사용된 대기변수는 500/ 750/ 1000hpa에서의 지위고도, 500-1000hpa에서의 층후(thickness), 500hpa에서의 X와 Y의 바람성분, 750hpa에서의 X와 Y의 바람성분, 표면풍속, 500/ 750hpa/ 표면에서의 온도, 평균해면기압, 3시간 누적 강수, AWS관측소에서 관측된 RDAPS모형 실행전의 6시간과 12시간동안의 누적강수, 가강수량, 상대습도이며, 예측변수로는 강수발생확률로 선택하였다. 강우는 다양한 대기변수들의 비선형 조합으로 발생되기 때문에 예측인자와 예측변수 사이의 복잡한 비선형성을 고려하는데 유용한 인공신경망을 사용하였다. 신경망의 구조는 전방향 다층퍼셉트론으로 구성하였으며 역전파알고리즘을 학습방법으로 사용하였다. 강수예측성과의 질을 평가하기 위해서 $2{\times}2$ 분할표를 이용하여 Hit rate, Threat score, Probability of detection, Kuipers Skill Score를 사용하였으며, 신경망 학습후의 강수발생확률은 학습전의 강수발생확률에 비하여 한반도영역에서 평균적으로 Kuipers Skill Score가 0.2231에서 0.4293로 92.39% 상승하였다.

  • PDF

빅데이터 분석방법을 활용한 제조업 혁신성과예측 방법에 대한 연구 : 딥 러닝 알고리즘을 중심으로 (Forecasting Innovation Performance via Deep Learning Algorithm: A Case of Korean Manufacturing Industry)

  • 황정재;김재영;박재민
    • 한국기술혁신학회:학술대회논문집
    • /
    • 한국기술혁신학회 2017년도 추계학술대회 논문집
    • /
    • pp.499-510
    • /
    • 2017
  • 기술혁신에는 본질적인 어려움이 따르는데, 이는 상당부분 기술이 지닌 불확실성에 기인한다. 따라서 혁신 추구의 어려움을 경감에는 혁신 예측 방법론이 큰 도움이 될 수 있다. 한편 최근 빅데이터와 인공지능에 큰 관심이 이어지며 특히 알파고의 알고리즘 중 하나인 딥 러닝이 뛰어난성능을 보이고 있다. 이에 본 연구는 혁신성과 예측에 있어 딥 러닝을 이용한 방법론을 접목하여 연구를 진행하였다.. 모델 구축 및 학습에 있어 KIS 2016 데이터를 이용하였으며, 투입 요인으로는 정보 원천의 사용도와 혁신 목적을 사용하였고 산출 요인으로는 혁신 성과 지표를 구성하여 사용하였다.

  • PDF

다양한 재해분석을 위한 AI 기술적용 사례 소개 (Application of AI technology for various disaster analysis)

  • 이기하;레수안히엔;응웬반지앙;응웬반린;정성호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.97-97
    • /
    • 2023
  • 최근 재해분야에서 인공신경망(ANN), 기계학습(ML), 딥러닝(DL) 등 AI 기술이 활용성이 점차 증가하고 있으며, 센싱정보와 연계한 시설물 안전관리, 원격탐사와 연계한 재해감시(녹조, 산사태, 산불 등), 수문시계열(수위, 유량 등) 예측, 레이더·위성강수 자료의 보정과 예측, 상하수도 관망누수예측 등 다양한 분야에서 AI 기술이 적용되고 그 활용성이 검증된 바 있다. 본 연구에서는 ML, DL, 물리기반신경망(Pysics-informed Neural Networks, PINNs)을 이용한 다양한 재해분석 사례를 소개하고, 그 활용성과 한계에 대해서 논의하고자 한다. 주요사례로는 (1) SAR영상과 기계학습을 이용한 재해피해지역(울진 산불) 감지, (2) 국가 디지털 정보를 이용한 산사태 위험지역 판별(인제 산사태) (3) 기계학습 및 딥러닝 기법을 이용한 위성강수 자료의 보정·예측 및 유출해석, (4) 수리해석을 위한 수치해석분야에서의 PINNs의 적용성(1차원 Saint-Venant 식 해석) 평가 연구결과를 공유한다. 특히, 자료의 입·출력 자료만으로 학습된 인공신경망 모형 대신 지배방정식(물리방정식)을 만족하도록 강제한 PINNs의 경우, 인공신경망 모형보다 우수한 모의능력을 보여주었으며, 향후 복잡한 수리모델링 등 수치해석분야에서 그 활용가능성이 매우 높을 것으로 판단된다.

  • PDF

호텔 수요 예측을 위한 전역/지역 모델을 선택적으로 활용하는 시계열 예측 모델 (A Time Series Forecasting Model with the Option to Choose between Global and Clustered Local Models for Hotel Demand Forecasting)

  • 박기현;정경호;안현철
    • 한국빅데이터학회지
    • /
    • 제9권1호
    • /
    • pp.31-47
    • /
    • 2024
  • 인공지능 기술의 발전으로 인해 여행 및 호텔 산업에서도 다양한 목적의 인공지능과 기계학습 기법이 활용되고 있다. 특히 관광 산업에서는 수요 예측이 매우 중요한 요소로 인식되는데, 이는 서비스 효율성과 수익 극대화에 직접적인 영향을 미치기 때문이다. 수요 예측 시 시간에 따라 변화하는 데이터 흐름을 고려해야 하며, 이를 위해 통계적 기법과 기계학습 모델이 사용된다. 최근에는 수요 예측 데이터의 다양성과 현실의 복잡성을 반영하고자 기존 모델의 변형과 통합 연구가 진행되고 있으며, 그 결과 불확실성과 변동성에 대한 예측 성능이 향상되었음이 보고되고 있다. 본 연구에서는 기존 호텔수요 예측 연구에서 시도되지 않았던 다양한 기계학습 접근법을 통합하여 호텔 판매 수요 예측 정확도를 높이는 새로운 모델을 제안한다. 구체적으로 DTW K-means 클러스터링을 통해 지역모델을 구축하고, 전체 데이터를 활용한 전역모델과 선택적으로 결합하는 XGBoost 기반 시계열 예측 모델을 제시한다. 제안 모델은 지역과 전역 모델의 장점을 살려 호텔 수요 예측 성능을 제고할 것으로 기대된다. 이는 호텔 및 여행 산업 성장에 기여할 뿐만 아니라, 향후 다른 경영 분야 예측에도 확장 적용될 수 있을 것이다.