• Title/Summary/Keyword: 학습문제 추천

Search Result 103, Processing Time 0.028 seconds

A Collaborative Recommendation Based on Neural Networks Using the Clustering (클러스터링을 이용한 신경망 기반 협력적 추천)

  • 김은주;류정우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.343-345
    • /
    • 2002
  • 개인화를 위한 협력적 추천의 대표적인 방법인 최근접 이웃 방법은 적용이 쉽지만, 사용자의 선호도 정보가 적을 경우 회소성(sparsity)문제와 사용자 수가 많은 경우 수행 속도가 느려지는 범위성(Scalability)문제 그리고 사용자간의 가중치가 결여되었다는 점에서 추천의 정확성이 떨어진다. 신경망 기반 추천은 자료의 유형에 상관없이 데이터의 처리가 용이하고, 사용자간의 가중치를 학습할 수 있으며, 내용 정보, 인구통계학적 정보 등을 입력 노드에 추가함으로써 희소성 문제를 해결할 수 있으나. 범위성 문제는 존재한다. 따라서 본 논문에서는 최근접 이웃 방법으로 클러스터링 한 유사한 사용자 또는 항목들을 고려한 신경망 기반 추천 방법을 제안하여 범위성 문제를 최소화시킴으로써 추천의 성능을 향상시키고 있다. 제안한 추천 방법의 타당성을 보이기 위해 EachMovie데이터를 이용하여 기존 신경망 추천과 비교 실험하여 성능을 분석한다.

  • PDF

A BN-based Recommendation System Reflecting User's Preference in Mobile Devices (모바일 장비에서 사용자의 선호도를 반영한 베이지안 네트워크 기반 추천 시스템)

  • Park, Moon-Hee;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.277-280
    • /
    • 2007
  • 무선통신의 발달에 따라 모바일 장비 기반의 이동성을 고려한 서비스에 관한 연구가 활발하다. 모바일 장비는 제한된 화면크기, 부족한 리소스 등의 한계와 함께 사용자의 이동 중에 발생하는 이벤트를 처리해야 한다는 문제가 있기 때문에, 사용자에게 친숙한 인터페이스와 개별화된 추천 서비스가 요구된다. 본 논문에서는 사용자의 선호도를 반영한 베이지안 네트워크를 이용하여 모바일 장비에서 개인화된 추천 시스템을 개발한다. 실시간으로 변화하는 환경에 적응하도록 네트워크를 설계하기 위하여 전문가에 의해 구조를 설계하고, 수집된 사용자 로그를 바탕으로 파라메터를 학습하여 베이지안 네트워크 모델을 생성한 후, 학습된 모델 기반의 추론결과를 실제 컨텐츠와 비교하여 시스템에 매핑시킴으로써 사용자에게 추천한다. 실제 신촌지역 음식점 추천을 대상으로 실험한 결과, 그 가능성을 확인할 수 있었다.

  • PDF

Data Fusion for performance Enhancement of Neural Network Based Recommendation Models (신경망 기반 추천 모델의 성능향상을 위한 정보의 융합)

  • 김호종;김은주;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.422-424
    • /
    • 2003
  • 협력적 추천은 데이터의 범위성, 초기 사용자, 희소성, 회색양의 문제를 안고 있다. 이를 해결하기 위해 기존 연구는 내용기반 추천이나 인구통계학적 추천을 협력적 추천과 통합하려는 연구가 진행되어 왔다. 본 논문에서는 추천 시스템의 성능 향상을 위해 이질적인 데이터의 통합에 효과적인 신경망을 사용하여 다양한 종류의 정보 융합을 제안한다 신경망을 사용한 추천 모델은 사용자들 또는 항목들 간의 선호관계를 학습할 수 있고, 이질적인 데이터의 통합이 용이한 신경망의 장점을 이용하면 항목들에 대한 내용과 사용자들의 인구통계학적인 정보, 그리고 그 외적인 관련정보를 쉽게 융합할 수 있다. 또한, 데이터 융합을 통하여 희소 데이터 문제와 초기 사용자 문제를 해결할 수 있다.

  • PDF

Recommender System using Context Information and Spatial Data Mining (상황정보와 공간 데이터 마이닝 기법을 이용한 추천 시스템)

  • Lee Bae-Hee;Jo Geun-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.667-669
    • /
    • 2005
  • 유비쿼터스 시대를 향하여 나아가는 현대 사회에서 사람들을 위한 추천시스템은 필수 불가결한 요소 중의 하나이다. 추천 시스템 중에서 사용자의 성별, 나이, 직업 등의 인구 통계적 요소를 고려한 시스템이 주를 이루고 있지만 이러한 시스템에는 어느 정도의 한계가 있다. 추천에 있어서 사용자의 기분, 날씨, 온도 등 주변 환경의 상황이 반영되지 않고 있고 학습을 위한 데이터에 대한 신뢰도 또한 문제가 된다. 이러한 문제점을 해결하기 위해 본 논문에서는 상황정보(Context Information)와 공간 데이터 마이닝(Spatial Data Mining) 기법을 이용한 향상된 추천 시스템을 제안한다. 제안하는 시스템에서는 보다 정확한 추천을 위해 첫째, 날씨, 온도, 사용자의 기분 등의 상황정보를 고려하였다. 그리고 사용자의 유사도 측정을 통해 학습 데이터의 신뢰도를 향상시켰으며, 셋째, 의사결정 트리(Decision Tree) 기법을 이용하여 추천의 정확도를 높였다. 실험을 통하여 측정한 결과 제안하는 추천시스템이 기존의 인구 통계적 요소만을 고려한 시스템이나 의사결정 트리만을 이용한 시스템보다 향상된 성능을 보였다.

  • PDF

A Reinforcement Learning Approach to Collaborative Filtering Considering Time-sequence of Ratings (평가의 시간 순서를 고려한 강화 학습 기반 협력적 여과)

  • Lee, Jung-Kyu;Oh, Byong-Hwa;Yang, Ji-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.31-36
    • /
    • 2012
  • In recent years, there has been increasing interest in recommender systems which provide users with personalized suggestions for products or services. In particular, researches of collaborative filtering analyzing relations between users and items has become more active because of the Netflix Prize competition. This paper presents the reinforcement learning approach for collaborative filtering. By applying reinforcement learning techniques to the movie rating, we discovered the connection between a time sequence of past ratings and current ratings. For this, we first formulated the collaborative filtering problem as a Markov Decision Process. And then we trained the learning model which reflects the connection between the time sequence of past ratings and current ratings using Q-learning. The experimental results indicate that there is a significant effect on current ratings by the time sequence of past ratings.

C_PBS: C Program Bank System (C_PBS: C 프로그램 문제 은행 시스템)

  • Kim, Heung-Hwan
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.2
    • /
    • pp.45-57
    • /
    • 2010
  • In this paper, we propose a C_PBS(C Program Bank System) which can support effective learning of C language. C_PBS allows a variety of problem uses and provides 3 types of search method for user convenience. It also shows many useful facilities: a variety of answers to a problem, display of problems according to reference frequency, interesting problem list, and problem carts. Especially, with the addition of comments and reference to the problems and answers, it implements collective intelligence via mutual collaborative learning by supporting the philosophy of web 2.0: participation, sharing, and open.

  • PDF

Korean Learning Assistant System with Automatically Extracted Knowledge (자동 추출된 지식에 기반한 한국어 학습 지원 시스템)

  • Park, Gi-Tae;Lee, Tae-Hoon;Hwang, So-Hyun;Kim, Byeong Man;Lee, Hyun Ah;Shin, Yoon Sik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.2
    • /
    • pp.91-102
    • /
    • 2012
  • Computer aided language learning has become popular. But the level of automation of constructing a Korean learning assistant system is not so high because a practical language learning system needs large scale knowledge resources, which is very hard to acquire. In this paper, we propose a Korean learning assistant system that utilizes easily obtainable knowledge resources like a corpus, web documents and a lexicon. Our system has three modules - problem solving, pronunciation marker and writing assistant. Automatic problem generator uses a corpus and a lexicon to make problems with one correct answer and three distracters, then verifies their suitability by utilizing frequency information from web documents. We analyze pronunciation rules for a pronunciation marker and recommend appropriate words and sentences in real-time by using data extracted from a corpus. In experiment, we evaluate 400 automatically generated problems, which show 89.9% problem suitability and 64.9% example suitability.

Data BILuring Method for Solving Sparseness Problem in Collaborative Filtering (협동적 여과에서의 희소성 문제 해결을 위한 데이타 블러링 기법)

  • Kim, Hyung-Il;Kim, Jun-Tae
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.6
    • /
    • pp.542-553
    • /
    • 2005
  • Recommendation systems analyze user preferences and recommend items to a user by predicting the user's preference for those items. Among various kinds of recommendation methods, collaborative filtering(CF) has been widely used and successfully applied to practical applications. However, collaborative filtering has two inherent problems: data sparseness and the cold-start problems. If there are few known preferences for a user, it is difficult to find many similar users, and therefore the performance of recommendation is degraded. This problem is more serious when a new user is first using the system. In this paper we propose a method of integrating additional feature information of users and items into CF to overcome the difficulties caused by sparseness and improve the accuracy of recommendation. In our method, we first fill in unknown preference values by using the probability distribution of feature values, then generate the top-N recommendations by applying collaborative filtering on the modified data. We call this method of filling unknown preference values as data blurring. Several experimental results that show the effectiveness of the proposed method are also presented.

Design and Implementation of Contents-based Customized movie recommendation system using meta weight learning (메타 가중치 학습을 활용한 내용 기반의 맞춤형 영화 추천시스템 설계 및 구현)

  • An, Hyeon Woo;You, Hea Woon;Kim, Dea Yeol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.587-590
    • /
    • 2020
  • 최근, 디지털 콘텐츠 산업이 폭발적으로 성장됨에 따라 고객 유치를 위한 개인화 추천 기술들이 많은 주목을 받고 있다. 개인화 추천 방식들을 큰 갈래로 나누어 본다면 협업 필터링 기술과 내용 기반 기술로 나눌 수 있다. 협업 필터링의 경우 개인화 추천에는 적합하지만 사용자 평가 데이터의 양이 방대해야 하며 초기에 평가자가 없는 콘텐츠에 대해 추천할 수 없는 초기 평가자 문제가 존재한다. 따라서 매일 방대한 양의 콘텐츠가 편입되는 분야에서 사용하기에 큰 결점이 될 수 있다. 본 논문에서는 영화들의 정보가 담긴 데이터 셋과 사용자 평가 데이터, 그리고 사용자의 선호 기준을 의미하는 메타 가중치를 활용한 내용 기반의 맞춤형 영화 추천 시스템을 제안한다. 논문에서는 먼저, 영화를 고를 때 일반적으로 중요시 보는 속성들을 활용하여 영화의 특징 벡터를 구성하고, 이를 사용자 평가와 결합하여 개인의 선호에 대한 특징 벡터를 구성하는 방법을 제안하며, 구성된 데이터와 코사인 유사도, 메타 가중치를 활용하여 사용자 선호와 유사한 영화들을 도출하는 방법을 제안한다. 또한, 평가데이터를 활용하여 구현된 추천시스템의 검증 프로세스를 구성하고, 검증 프로세스를 활용한 손실 함수를 설계하여 적합한 메타 가중치를 학습하는 방법을 제시한다. 본 논문에서 제안하는 시스템은 다수의 속성을 조합하여 활용하므로 추천 결과가 과도하게 특수화 되지 않을 수 있으며, 메타 가중치라는 요소를 통해 더욱 개인화 된 추천을 제공할 수 있다.

  • PDF

Exercise Recommendation System Using Deep Neural Collaborative Filtering (신경망 협업 필터링을 이용한 운동 추천시스템)

  • Jung, Wooyong;Kyeong, Chanuk;Lee, Seongwoo;Kim, Soo-Hyun;Sun, Young-Ghyu;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.173-178
    • /
    • 2022
  • Recently, a recommendation system using deep learning in social network services has been actively studied. However, in the case of a recommendation system using deep learning, the cold start problem and the increased learning time due to the complex computation exist as the disadvantage. In this paper, the user-tailored exercise routine recommendation algorithm is proposed using the user's metadata. Metadata (the user's height, weight, sex, etc.) set as the input of the model is applied to the designed model in the proposed algorithms. The exercise recommendation system model proposed in this paper is designed based on the neural collaborative filtering (NCF) algorithm using multi-layer perceptron and matrix factorization algorithm. The learning proceeds with proposed model by receiving user metadata and exercise information. The model where learning is completed provides recommendation score to the user when a specific exercise is set as the input of the model. As a result of the experiment, the proposed exercise recommendation system model showed 10% improvement in recommended performance and 50% reduction in learning time compared to the existing NCF model.