• Title/Summary/Keyword: 학습문서의 개수

Search Result 12, Processing Time 0.031 seconds

Classification Accuracy by Deviation-based Classification Method with the Number of Training Documents (학습문서의 개수에 따른 편차기반 분류방법의 분류 정확도)

  • Lee, Yong-Bae
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.325-332
    • /
    • 2014
  • It is generally accepted that classification accuracy is affected by the number of learning documents, but there are few studies that show how this influences automatic text classification. This study is focused on evaluating the deviation-based classification model which is developed recently for genre-based classification and comparing it to other classification algorithms with the changing number of training documents. Experiment results show that the deviation-based classification model performs with a superior accuracy of 0.8 from categorizing 7 genres with only 21 training documents. This exceeds the accuracy of Bayesian and SVM. The Deviation-based classification model obtains strong feature selection capability even with small number of training documents because it learns subject information within genre while other methods use different learning process.

Text Categorization Using a Helmholtz Machine (Helmholtz Machine 학습에 기반한 문서 분류)

  • 장정호;장병탁;김영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.466-468
    • /
    • 2000
  • 이 논문에서는 Helmholtz machine을 사용하여 데이터의 분포 추정을 함으로써 문서 분류기를 학습하는 방법 제안한다. Helmholtz machine 은 생성 모델과 인식 모델로 구성된 그래프 모델로서, 그래프 모델에서의 분포 추정을 보다 가능하게 하기 위한 근사 방법 중의 하나이다. Helmholtz machine에서의 각 입력 노드는 문서를 구성하는 하나의 단어에 대응하는 이진 노드이다. 입력 노드의 개수가 많아지면 그만큼 학습 시간이 증가하기 때문에, 학습 시간을 줄이면서 적정 수준의 성능을 유지하기 위해 자질 선정이 필요하다. 이러한 요구 사항을 충족시키기 위해 정보획득량(information gain)기준을 이용하였으며, 뉴스 그룹 데이터에 대해 그 성능을 측정하고 Naive Bayes를 이용한 것과 비교한다.

  • PDF

Performance Improvement by a Virtual Documents Technique in Text Categorization (문서분류에서 가상문서기법을 이용한 성능 향상)

  • Lee, Kyung-Soon;An, Dong-Un
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.501-508
    • /
    • 2004
  • This paper proposes a virtual relevant document technique in the teaming phase for text categorization. The method uses a simple transformation of relevant documents, i.e. making virtual documents by combining document pairs in the training set. The virtual document produced by this method has the enriched term vector space, with greater weights for the terms that co-occur in two relevant documents. The experimental results showed a significant improvement over the baseline, which proves the usefulness of the proposed method: 71% improvement on TREC-11 filtering test collection and 11% improvement on Routers-21578 test set for the topics with less than 100 relevant documents in the micro average F1. The result analysis indicates that the addition of virtual relevant documents contributes to the steady improvement of the performance.

Usenet News Filtering using Fuzzy Inference and Kohonen Network (퍼지추론과 코호넨 신경망을 사용한 유즈넷 뉴스 필터링)

  • 김종완;조규철;김병익
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2003.05a
    • /
    • pp.47-51
    • /
    • 2003
  • 인터넷을 통해 제공되는 맡은 양의 뉴스 정보 중에서 찾고자 하는 정확한 정보를 빠른 시간 안에 검색하고, 원하는 정보만 필터링 하는 것이 필요하다. 먼저, 인터넷에 접속된 뉴스서버들의 뉴스 문서를 각 그룹별로 수집한다. 수집된 뉴스 문서를 대상으로 퍼지추론을 통하여 문서를 대표하는 키워드를 추출하여 데이터베이스에 저장한다. 각 뉴스그룹의 문서에서 단어들을 분석하여 입력된 단어들의 개수를 이용하여 정규화 시켜서 대표적인 비지도학습 신경망인 코호넨 신경망을 사용하여 학습시킨다. 코호넨 신경망으로 추출된 단어들의 연관성을 활용하여 뉴스그룹을 클러스터링한다. 최종적으로 사용자가 관심 있는 키워드를 입력하면, 학습된 신경망이 유사한 뉴스그룹들을 사용자에게 제시해준다.

  • PDF

Effective Feature Selection for Patent Classification (특허 분류를 위한 효과적인 자질 선택)

  • Jung Ha-Yong;Huang Jin-Xia;Shin Sa-Im;Choi Key-Sun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.670-672
    • /
    • 2005
  • 자질 선택은 문서 분류와 같이 않은 자질을 사용하는 지도식 기계학습에 관한 연구에서 날로 중요성이 커지고 있다. 특히 특허문서 분류와 같은 작업은 기존의 문서 분류보다도 훨씬 많은 자질과 분류 범주를 가지기 때문에 전체 문서의 특징을 드러내는 적절한 부분집합을 선택해 학습하는 것이 절실하다. 전통적인 자질선택 방법은 필터라는 방법으로서 빠르지만 임계값을 정하기가 어렵다는 문제가 있다. 한편 최근에 많이 연구되는 래퍼는 일반적으로 필터보다. 좋은 성능을 보이지만 자질의 개수가 많을수록 시간이 오래 걸린다는 단점이 있다. 본 연구에서는 필터와 래퍼를 상호 보완적으로 결합하여 최적의 필터를 자동적으로 찾는 래퍼를 제안한다. 실험 결과, 제안한 방법이 효과적으로 자질 집합을 선택하는 것을 확인할 수 있었다.

  • PDF

Web Documents Classification with Fuzzy Integration of Multiple Structure-Adaptive Self-Organizing Maps (다중 구조적응 자기구성지도의 퍼지결합을 이용한 웹 문서 분류)

  • 김경중;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.371-373
    • /
    • 2003
  • 웹 문서를 분류하는 목적은 특정 주제별로 중요한 문서들을 구분하려는 것과 사용자의 선호도를 바탕으로 개인화를 하려는 것으로 나누어 볼 수 있다. 특히, 웹의 효율적인 탐색을 위해 사용자가 관심 있어 할 웹 문서를 분류하는 것은 중요하다 일반적으로 하나의 웹 문서는 특징 추출방법에 의해 문서 벡터로 표시되며 사용자의 선호여부나 주제번호를 클래스로 삼는다. 사용자가 선호도를 표시한 웹 문서를 사용하여 새로운 웹 문서의 선호 여부를 예측하기 위해 자기 구성지도(SOM)를 사용하면, 시각적으로 구조를 보여주어 데이터 사이의 관계를 효과적으로 이해할 수 있다. 그러나 SOM은 노드의 개수와 구조를 자동적으로 결정하지 못하는 단점이 있기 때문에, SOM의 장점을 활용하면서 자동적으로 구조를 결정하기 위해 구조적응 자기구성지도(SASOM)를 이용한다. 보다 나은 성능과 다양한 해석을 위해, 여러 개의 SASOM을 서로 다른 특징추출 방법을 이용하여 학습시킨 후 사용자가 주관적으로 분류기의 중요도를 결정할 수 있는 퍼지적분을 사용하여 결합하였다. UCI Syskill & Webert 데이터에 대한 실험결과 기존의 DT, MLP, naive Bayes 분류기 보다 향상된 성능을 보였다.

  • PDF

A Document Classification System Using Modified ECCD and Category Weight for each Document (Modified ECCD 및 문서별 범주 가중치를 이용한 문서 분류 시스템)

  • Han, Chung-Seok;Park, Sang-Yong;Lee, Soo-Won
    • The KIPS Transactions:PartB
    • /
    • v.19B no.4
    • /
    • pp.237-242
    • /
    • 2012
  • Web information service needs a document classification system for efficient management and conveniently searches. Existing document classification systems have a problem of low accuracy in classification, if a few number of feature words is selected in documents or if the number of documents that belong to a specific category is excessively large. To solve this problem, we propose a document classification system using 'Modified ECCD' feature selection method and 'Category Weight for each Document'. Experimental results show that the 'Modified ECCD' feature selection method has higher accuracy in classification than ${\chi}^2$ and the ECCD method. Moreover, combining the 'Category Weight for each Document' feature value and 'Modified ECCD' feature selection method results better accuracy in classification.

Bookmark Classification Agent Based on Naive Bayesian Learning Method (나이브 베이지안 학습법에 기초한 북마크 분류 에이전트)

  • 최정민;김인철
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.04a
    • /
    • pp.405-408
    • /
    • 2000
  • 최근 인터넷의 발전으로 많은 정보와 지식을 우리는 인터넷에서 제공받을 수 있게되었다. 인터넷에 존재하는 정보는 수많은 웹서버에 산재되어 있으며, 정보의 위치는 주소(URL)를 가지고 존재하게 되는데 사용자는 자신이 관심있는 정보의 주소를 저장하기 위하여 웹브라우저 북마크(Bookmark)기능을 사용한다. 그러나 북마크 기능은 웹문서의 주소 저장에 일차적인 목적을 두고 있으며, 이후 북마크의 개수가 증가하면, 사용자는 북마크관리가 어렵게되므로 사용자 북마크 파일을 자동으로 분류하여 관리할수 있는 에이전트 기술을 사용하고자 한다. 대표적인 분류에이전트 시스템으로는 전자우편 분류 에이전트인 Maxims, 뉴스기사 분류 에이전트인 NewT, 엔터테인먼트(Entertainment) 선별 에이전트인 Ringo 등이 있다. 이러한 시스템들은 분류할 대상에 따라 조금씩 다른 모습의 에이전트 기능을 보이고 있으며, 본 논문은 기계학습 이론중 교사학습 알고리즘인 나이브 베이지안 학습방법(Naive Bayesian Learning method)을 사용하여 사용자가 분류하지 못한 북마크를 자동으로 분류하는 단일 에이전트 기반 북마크 분류기를 설계, 구현하고자한다.

  • PDF

A Comparative Study on Requirements Analysis Techniques using Natural Language Processing and Machine Learning

  • Cho, Byung-Sun;Lee, Seok-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.27-37
    • /
    • 2020
  • In this paper, we propose the methodology based on data-driven approach using Natural Language Processing and Machine Learning for classifying requirements into functional requirements and non-functional requirements. Through the analysis of the results of the requirements classification, we have learned that the trained models derived from requirements classification with data-preprocessing and classification algorithm based on the characteristics and information of existing requirements that used term weights based on TF and IDF outperformed the results that used stemming and stop words to classify the requirements into functional and non-functional requirements. This observation also shows that the term weight calculated without removal of the stemming and stop words influenced the results positively. Furthermore, we investigate an optimized method for the study of classifying software requirements into functional and non-functional requirements.

A Spam Mail Classification Using Link Structure Analysis (링크구조분석을 이용한 스팸메일 분류)

  • Rhee, Shin-Young;Khil, A-Ra;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.30-39
    • /
    • 2007
  • The existing content-based spam mail filtering algorithms have difficulties in filtering spam mails when e-mails contain images but little text. In this thesis we propose an efficient spam mail classification algorithm that utilizes the link structure of e-mails. We compute the number of hyperlinks in an e-mail and the in-link frequencies of the web pages hyperlinked in the e-mail. Using these two features we classify spam mails and legitimate mails based on the decision tree trained for spam mail classification. We also suggest a hybrid system combining three different algorithms by majority voting: the link structure analysis algorithm, a modified link structure analysis algorithm, in which only the host part of the hyperlinked pages of an e-mail is used for link structure analysis, and the content-based method using SVM (support vector machines). The experimental results show that the link structure analysis algorithm slightly outperforms the existing content-based method with the accuracy of 94.8%. Moreover, the hybrid system achieves the accuracy of 97.0%, which is a significant performance improvement over the existing method.