• Title/Summary/Keyword: 학습률

Search Result 1,316, Processing Time 0.025 seconds

(Tuning Learning Rate in Neural Network Using Sugeno Fuzzy Model) (Sugeno 퍼지 모델을 이용한 신경망의 학습률 조정)

  • 라혁주;서재용;김성주;전흥태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.77-80
    • /
    • 2003
  • 신경망의 퍼셉트론 학습법에는 이진 또는 연속 활성화 함수가 사용된다. 초기 연결강도는 임의의 값으로 설정하며, 목표치와 실제 출력과의 차이를 이용하는 것이 주된 특징이다. 즉 구해진 오차는 학습률에 따라서 다음 단계의 연결강도에 영향을 주게 된다. 이런 경우 학습률이 너무 크면 수렴성을 보장할 수 없으며, 반대로 너무 작게 선정하면 학습이 매우 느리게 진행되는 단점이 발생한다. 이런 이유로 능동적인 학습률의 변화는 신경망의 퍼셉트론 학습법에 중요한 관건이 리며, 주어진 문제를 최적으로 학습을 위해서는 결국 상황에 따른 적절한 학습률 조정이 필요하다. 본 논문에서는 학습률 조정에 퍼지 모델을 적용하는 신경망 학습 방법을 제안하고자 한다. 제안한 방법에 의한 학습은 오차의 변화에 따라 학습률을 조정하는 방식을 사용하였고, 그 결과 연결강도를 능동적으로 변화시켜 효과적인 학습 결과를 얻었다. 학습률 변화는 'Sugeno 퍼지 모델'을 이용하여 구현하였다.

  • PDF

Optimal Learning Rates in Gradient Descent Training of Multilayer Perceptrons (다층퍼셉트론의 강하 학습을 위한 최적 학습률)

  • 오상훈
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.3
    • /
    • pp.99-105
    • /
    • 2004
  • This paper proposes optimal learning rates in the gradient descent training of multilayer perceptrons, which are a separate learning rate for weights associated with each neuron and a separate one for assigning virtual hidden targets associated with each training pattern Effectiveness of the proposed error function was demonstrated for a handwritten digit recognition and an isolated-word recognition tasks and very fast learning convergence was obtained.

  • PDF

Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates (비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델)

  • Kim Yong-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.101-105
    • /
    • 2005
  • 본 논문에서는 LVQ(Learning Vector Quantization)을 퍼지화한 새로운 퍼지 학습 법칙을 제안하였다. 퍼지 LVQ 학습 법칙 3은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데, 기존의 LVQ와는 달리 비대칭인 학습률을 사용하였다. 기본의 LVQ에서는 분류가 맞거나 틀렸을 때 같은 학습률을 사용하고 부호만 달랐으나, 새로운 퍼지 학습 법칙에서는 분류가 맞거나 틀렸을 때 부호가 다를 뿐만 아니라 학습률도 다르다. 이 새로운 퍼지 학습 법칙을 무감독 신경회로망인 improved IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하여 감독 신경회로망으로 변형하였다. Improved IAFC 신경회로망은 유연성이 있으면서도 안정성이 있다. 제안한 supervised IAFC 신경회로망 3의 성능과 오류 역전파 신경회로망의 성능을 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC 신경회로망 3가 오류 역전파 신경회로망보다 성능이 우수하였다.

  • PDF

Fast Competitive Learning with Classified Learning Rates (분류된 학습률을 가진 고속 경쟁 학습)

  • Kim, Chang-Wook;Cho, Seong-Won;Lee, Choong-Woong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.142-150
    • /
    • 1994
  • This paper deals with fast competitive learning using classified learning rates. The basic idea of the proposed method is to assign a classified learning rate to each weight vector. The weight vector associated with an output node is updated using its own learning rate. Each learning rate is changed only when its corresponding output node wins the competition, and the learning rates of the losing nodes are not changed. The experimental results obtained with image vector quantization show that the proposed method learns more rapidly and yields better quality that conventional competitive learning.

  • PDF

A Study on Auto-Tuning Method of learning Rate by Using Fuzzy Logic System (퍼지 논리 시스템을 이용한 학습률 자동 조정 방법에 관한 연구)

  • 주영호;김태영;김광백
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.484-489
    • /
    • 2003
  • 본 논문에서는 역전파 알고리즘의 성능 개선을 위해 퍼지 논리 시스템을 이용한 학습률 자동 조정 방법을 제안한다. 제안된 방법은 목표값과 출력값의 차이에 대한 절대값이 $\varepsilon$ 보다 적거나 같으면 정확성으로 분류하고 크면 부정확성으로 분류한다. 정확성의 총 개수를 퍼지 논리 시스템에 적용하여 학습률과 모멘텀을 동적으로 조정한다. 제안된 방법을 XOR 문제와 숫자패턴 문제에 적용하여 실험한 결과, 기존의 역전파 알고리즘, 모멘텀 방식, Jacob의 delta-bar-delta 방식보다 성능이 개선됨을 확인하였다.

  • PDF

An Improvement of the Outline Mede Error Backpropagation Algorithm Learning Speed for Pattern Recognition (패턴인식에서 온라인 오류역전파 알고리즘의 학습속도 향상방법)

  • 이태승;황병원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.616-618
    • /
    • 2002
  • MLP(multilayer perceptron)는 다른 패턴인식 방법에 비해 몇 가지 이점이 있어 다양한 문제영역에서 사용되고 있다 그러나 MLP의 학습에 일반적으로 사용되는 EBP(error backpropagation) 알고리즘은 학습시간이 비교적 오래 걸린다는 단점이 있으며, 이는 실시간 처리를 요구하는 문제나 대규모 데이터 및 MLP 구조로 인해 학습시간이 상당히 긴 문제에서 제약으로 작용한다. 패턴인식에 사용되는 학습데이터는 풍부한 중복특성을 내포하고 있으므로 패턴마다 MLP의 내부변수를 갱신하는 은라인 계열의 학습방식이 속도의 향상에 상당한 효과가 있다. 일반적인 온라인 EBP 알고리즘에서는 내부 가중치 갱신시 고정된 학습률을 적용한다. 고정 학습률을 적절히 선택함으로써 패턴인식 응용에서 상당한 속도개선을 얻을 수 있지만, 학습률을 고정함으로써 온라인 방식에서 패턴별 갱신의 특성을 완전히 활용하지 못하는 비효율성이 발생한다. 또한, 학습도중 패턴군이 학습된 패턴과 그렇지 못한 패턴으로 나뉘고 이 가운데 학습된 패턴은 학습을 위한 계산에 포함될 필요가 없음에도 불구하고, 기존의 온라인 EBP에서는 에폭에 할당된 모든 패턴을 일률적으로 계산에 포함시킨다. 이 문제에 대해 본 논문에서는 학습이 진행됨에 따라 패턴마다 적절한 학습률을 적용하고 필요한 패턴만을 학습에 반영하는 패턴별 가변학습률 및 학습생략(COIL) 방댑을 제안한다. 제안한 COIL의 성능을 입증하기 위해 화자증명과 음성인식을 실험하고 그 결과를 제시한다.

  • PDF

A Study on the Recognition Algorithm of Paprika in the Images using the Deep Neural Networks (심층 신경망을 이용한 영상 내 파프리카 인식 알고리즘 연구)

  • Hwa, Ji Ho;Lee, Bong Ki;Lee, Dae Weon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.142-142
    • /
    • 2017
  • 본 연구에서는 파프리카를 자동 수확하기 위한 시스템 개발의 일환으로 파프리카 재배환경에서 획득한 영상 내에 존재하는 파프리카 영역과 비 파프리카 영역의 RGB 정보를 입력으로 하는 인공신경망을 설계하고 학습을 수행하고자 하였다. 학습된 신경망을 이용하여 영상 내 파프리카 영역과 비 파프리카 영역의 구분이 가능 할 것으로 사료된다. 심층 신경망을 설계하기 위하여 MS Visual studio 2015의 C++, MFC와 Python 및 TensorFlow를 사용하였다. 먼저, 심층 신경망은 입력층과 출력층, 그리고 은닉층 8개를 가지는 형태로 입력 뉴런 3개, 출력 뉴런 4개, 각 은닉층의 뉴런은 5개로 설계하였다. 일반적으로 심층 신경망에서는 은닉층이 깊을수록 적은 입력으로 좋은 학습 결과를 기대 할 수 있지만 소요되는 시간이 길고 오버 피팅이 일어날 가능성이 높아진다. 따라서 본 연구에서는 소요시간을 줄이기 위하여 Xavier 초기화를 사용하였으며, 오버 피팅을 줄이기 위하여 ReLU 함수를 활성화 함수로 사용하였다. 파프리카 재배환경에서 획득한 영상에서 파프리카 영역과 비 파프리카 영역의 RGB 정보를 추출하여 학습의 입력으로 하고 기대 출력으로 붉은색 파프리카의 경우 [0 0 1], 노란색 파프리카의 경우 [0 1 0], 비 파프리카 영역의 경우 [1 0 0]으로 하는 형태로 3538개의 학습 셋을 만들었다. 학습 후 학습 결과를 평가하기 위하여 30개의 테스트 셋을 사용하였다. 학습 셋을 이용하여 학습을 수행하기 위해 학습률을 변경하면서 학습 결과를 확인하였다. 학습률을 0.01 이상으로 설정한 경우 학습이 이루어지지 않았다. 이는 학습률에 의해 결정되는 가중치의 변화량이 너무 커서 비용 함수의 결과가 0에 수렴하지 않고 발산하는 경향에 의한 것으로 사료된다. 학습률을 0.005, 0.001로 설정 한 경우 학습에 성공하였다. 학습률 0.005의 경우 학습 횟수 3146회, 소요시간 20.48초, 학습 정확도 99.77%, 테스트 정확도 100%였으며, 학습률 0.001의 경우 학습 횟수 38931회, 소요시간 181.39초, 학습 정확도 99.95%, 테스트 정확도 100%였다. 학습률이 작을수록 더욱 정확한 학습이 가능하지만 소요되는 시간이 크고 국부 최소점에 빠질 확률이 높았다. 학습률이 큰 경우 학습 소요 시간이 줄어드는 반면 학습 과정에서 비용이 발산하여 학습이 이루어지지 않는 경우가 많음을 확인 하였다.

  • PDF

Characteristics of Neural Networks for ECG Pattern Classification (심전도 패턴을 분류하기 위한 신경망 특성 평가)

  • 김만선;김원식;노기용;이상태
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2003.05a
    • /
    • pp.148-153
    • /
    • 2003
  • 본 논문에서는 심근허혈 질환을 효율적으로 분류하기 위한 신경망을 설계하였다. European ST-T DB의 심전도로부터 ST 분절의 특징을 추출하여 입력노드를 결정하고 10개의 학습률과 학습 횟수에 따른 신경망의 MES를 계산하였다. 실험 결과 특징 파라미터의 조합을 ST0, ST80, Slope, Area로 하였을 때 MSE를 가장 작았다. 이러한 특징 파라미터를 이용하여 신경망의 입력으로 학습시킨 경우 학습 횟수의 증가에 따라 MSE가 지수합수적으로 감소하였으며 1,000회 이상에서는 둔하게 감소하였다. 또한 학습 횟수가 5,000회, 10,000회, 15,000회 각각의 경우에 대하여 학습률을 0.01부터 0.7까지 증가시키면서 MSE를 계산한 결과 학습 횟수가 증가할수록 MSE를 최소로 하는 최적학습률이 0.1부터 0.04까지 감소하였다.

  • PDF

Implementation of Face Recognition Pipeline Model using Caffe (Caffe를 이용한 얼굴 인식 파이프라인 모델 구현)

  • Park, Jin-Hwan;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.430-437
    • /
    • 2020
  • The proposed model implements a model that improves the face prediction rate and recognition rate through learning with an artificial neural network using face detection, landmark and face recognition algorithms. After landmarking in the face images of a specific person, the proposed model use the previously learned Caffe model to extract face detection and embedding vector 128D. The learning is learned by building machine learning algorithms such as support vector machine (SVM) and deep neural network (DNN). Face recognition is tested with a face image different from the learned figure using the learned model. As a result of the experiment, the result of learning with DNN rather than SVM showed better prediction rate and recognition rate. However, when the hidden layer of DNN is increased, the prediction rate increases but the recognition rate decreases. This is judged as overfitting caused by a small number of objects to be recognized. As a result of learning by adding a clear face image to the proposed model, it is confirmed that the result of high prediction rate and recognition rate can be obtained. This research will be able to obtain better recognition and prediction rates through effective deep learning establishment by utilizing more face image data.

Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates (비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델)

  • Kim Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.800-804
    • /
    • 2005
  • This paper presents a fuzzy learning rule which is the fuzzified version of LVQ(Learning Vector Quantization). This fuzzy learning rule 3 uses fuzzy learning rates. instead of the traditional learning rates. LVQ uses the same learning rate regardless of correctness of classification. But, the new fuzzy learning rule uses the different learning rates depending on whether classification is correct or not. The new fuzzy learning rule is integrated into the improved IAFC(Integrated Adaptive Fuzzy Clustering) neural network. The improved IAFC neural network is both stable and plastic. The iris data set is used to compare the performance of the supervised IAFC neural network 3 with the performance of backprogation neural network. The results show that the supervised IAFC neural network 3 is better than backpropagation neural network.