• Title/Summary/Keyword: 학술적 텍스트

Search Result 1,089, Processing Time 0.04 seconds

A System for the Decomposition of Text Block into Words (텍스트 영역에 대한 단어 단위 분할 시스템)

  • Jeong, Chang-Boo;Kwag, Hee-Kue;Jeong, Seon-Hwa;Kim, Soo-Hyung
    • Annual Conference of KIPS
    • /
    • 2000.10a
    • /
    • pp.293-296
    • /
    • 2000
  • 본 논문에서는 주제어 인식에 기반한 문서영상의 검색 및 색인 시스템에 적용하기 위한 단어 단위 분한 시스템을 제안한다. 제안 시스템은 영상 전처리, 문서 구조 분석을 통해 추출된 텍스트 영역을 입력으로 단어 단위 분할을 수행하는데, 텍스트 영역에 대해 텍스트 라인을 분할하고 분할된 텍스트 라인을 단어 단위로 분할하는 계층적 접근 방법을 사용한다. 텍스트라인 분할은 수평 방향 투영 프로파일을 적용하여 분할 지점을 구한다. 그리고 단어 분할은 연결요소들을 추출한 후 연결요소간의 gap 정보를 구하고, gap 군집화 기법을 사용하여 단어 단위 분한 지점을 구한다. 이때 단어 단위 분할의 성능을 저하시키는 특수기호에 대해서는 휴리스틱 정보를 이용하여 검출한다. 제안 시스템의 성능 평가는 50개의 텍스트 영역에 적용하여 99.83%의 정확도를 얻을 수 있었다.

  • PDF

Mark-up for Representing Emotion (감정의 표현을 휘한 마크업)

  • 박성은;이용규
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.487-490
    • /
    • 2004
  • 이메일과 같은 텍스트 기반의 서비스 둥이 점차 대중화되고 있지만, 이러한 텍스트 기반의 서비스에서는 메시지를 전달할 때 수신자가 필자의 감정 상태를 정확하게 파악하기 어려운 문제가 있다. 이러한 문제를 단편적으로 해결하기 위하여 감정 상태를 나타내는 이모티콘(emoticon)을 사용하기도 하지만 이는 보편적이지 않아서 사용하기에 불편한 점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위한 방안으로 일반 텍스트 문서에 감정 태그를 삽입하여 필자의 감정을 표현할 수 있도록 새로운 마크업 언어인 EmoXML(Emotion XML)을 정의한다. 그리고 문장 내에 포함되어 있는 감정 어휘를 인식하여, 관련 감정 태그를 자동으로 생성하고 처리할 수 있는 시스템을 설계한다.

  • PDF

Efficient Document Classification for Web Document Collection (웹 문서 수집을 위한 효율적인 문서 분류)

  • Lee, Jung-Hun;Cheon, Suh-Hyun;Kim, Sun-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.397-401
    • /
    • 2006
  • 최근 다양한 형식의 웹 문서에서 사용자가 원하는 정보만을 검색 하기위해 웹 문서를 주제별로 분류하여 수집하고, 관리하는 것은 필수적인 요소이다. 즉, 정확하고 빠른 정보 검색을 위한 웹 문서 수집은 문서 형식에 따라 분류되어 수집 되어야 한다. 따라서 웹 환경에서 문서를 구성하는 형식을 텍스트나 이미지 데이터로 구분하고 그 형식에 맞는 분류기법을 사용한다면 정확한 정보 검색이 이루어 질수 있다. 본 논문에서는 텍스트와 URL을 이용한 주제 중심의 하이브리드 웹 문서 분류 방법을 제안한다. 텍스트와 URL을 이용한 분류 방법은 텍스트 형식은 주제 중심의 문서 분류방식을 사용하며, 텍스트 정보의 효용성이 낮은 경우 URL의 주제 분포도를 이용하여 분류하며 수집한다. 이를 통해 여러 가지 형식의 웹 문서가 분류 가능하며, 주제에 따른 문서 분류의 정확도가 높아진다.

  • PDF

The Design & Implementation of Korean Hypertext Automatic Translator (한글 하이퍼텍스트 자동변환시스팀의 설계 및 구현)

  • Ahn, B.I.;Kim, Jay;Kim, Y.W.
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.91-98
    • /
    • 1993
  • 하이퍼텍스트는 문서검색 전산화의 새로운 대안을 제시하고 있으나 저작에 많은 시간과 노력이 요구되는 단점이 있다. 본 연구에서는 기존의 한글문서를 하이퍼텍스트 문서로 자동 변환하는 변환시스팀을 설계, 구현하였다. 문서는 사용자가 제공한 부제목형식의 정규표현식(regular expression)으로부터 논리적 구조가 분석되며 문서분할, 형태소분석, 대표카드결정 및 링크생성의 과정을 거쳐 하이퍼텍스트 문서로 변환된다. 시험운용 결과 본 시스팀은 대량의 한글문서를 적은 노력으로 실용성있는 하이퍼텍스트 문서로 자동 변환할 수 있음을 입증하였다.

  • PDF

Text Visualization and Concordance Search Using Gutenberg Project Text Data (구텐베르그 프로젝트 텍스트 데이터를 활용한 시각화 및 용례 검색)

  • Kim, Dongsung;Shin, Yeonsu;Lee, Jian;Yu, Jimin
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.175-178
    • /
    • 2017
  • 본 연구는 거시적 빅데이터 인문학과 미시적 언어 텍스트 검색 시스템을 구축하고, 이를 통해서 언어를 통한 문화의 역동적 변화를 시간적 순서에 따라 살펴보고자 한다. 연구의 최종적인 목표는 문화도 생물체처럼 변화하는 존재라 여기고 그 구성요소들을 연구한다는 뜻인 '문화체학(文化體學; Culturomics)'과 같은 '인문학 + 정보과학 + 사회과학' 등등의 다학문간의 융합적 연구에 있다. 이 시스템을 통해서 인류 역사의 기록인 텍스트 빅데이터를 통한 인문학적 성찰을 시각화하고 있다. 이러한 구글의 업적은 인문학과 정보기술의 융합을 통해서 인문학 자체의 지평을 넓히고, 사회과학을 변형시키고, 산업과 상아탑 사이의 관계를 재조정하는데 있다.

  • PDF

Text Visualization and Concordance Search Using Gutenberg Project Text Data (구텐베르그 프로젝트 텍스트 데이터를 활용한 시각화 및 용례 검색)

  • Kim, Dongsung;Shin, Yeonsu;Lee, Jian;Yu, Jimin
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.175-178
    • /
    • 2017
  • 본 연구는 거시적 빅데이터 인문학과 미시적 언어 텍스트 검색 시스템을 구축하고, 이를 통해서 언어를 통한 문화의 역동적 변화를 시간적 순서에 따라 살펴보고자 한다. 연구의 최종적인 목표는 문화도 생물체처럼 변화하는 존재라 여기고 그 구성요소들을 연구한다는 뜻인 '문화체학(文化體學; Culturomics)'과 같은 '인문학 + 정보과학 + 사회과학' 등등의 다학문간의 융합적 연구에 있다. 이 시스템을 통해서 인류 역사의 기록인 텍스트 빅데이터를 통한 인문학적 성찰을 시각화하고 있다. 이러한 구글의 업적은 인문학과 정보기술의 융합을 통해서 인문학 자체의 지평을 넓히고, 사회과학을 변형시키고, 산업과 상아탑 사이의 관계를 재조정하는데 있다[1].

  • PDF

Effective text visualization for biomedical information (생물 의료 정보의 효과적인 텍스트 시각화)

  • Kim, Tak-Eun;Park, Jong-C.
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.399-405
    • /
    • 2007
  • 생물 의료 분야에서 정보의 양이 아주 빠르게 증가하고 있다. 이러한 방대한 양의 정보에서 유용한 정보를 추출하기 위해 텍스트 마이닝 기법을 이용한 연구들이 많이 진행되어 왔다. 그렇지만 이렇게 뽑아진 정보조차 그 양이 방대하고, 또한 텍스트로 되어 있기 때문에 직관적으로 이해하기가 어렵다. 따라서 이러한 정보들을 좀 더 직관적으로 이해하기 위해서는 정보 시각화 시스템이 필수적이다. 최근 들어 이러한 정보 시각화에 대한 연구가 많이 진행되었으나 이러한 시각화 정보조차 너무나 방대하기 때문에 사용자가 필요로 하는 정보를 여과해 주는 방법이 필요하다. 그리고 시각화 시스템에서의 지식 발견을 위한 방법을 제공하여야 한다. 본 논문에서는 생물 의료 정보의 텍스트 시각화에 초점을 맞추어 생물 의료 정보의 효과적인 표현 방법과 지식 발견을 위한 직관적인 인터페이스를 제안하고자 한다.

  • PDF

An Efficient Algorithm for Constructing Suffix Arrays for DNA String (DNA스트링에 효율적인 써픽스 배열 구축 알고리즘)

  • 조준하;박회진;김동규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.961-963
    • /
    • 2004
  • 써픽스 배열은 텍스트의 써픽스들을 사전적 순서대로 저장하여 검색을 효율적으로 할 수 있는 자료구조이다. 생물학에서의 DNA 스트링과 같이 긴 텍스트에 대해 써픽스 배열을 이용하면 빠르게 검색할 수 있다. 써픽스 배열은 유사한 자료구조인 써픽스 트리에 비해 적은 공간을 차지하기 때문에 생물학에서 사용하는 긴 텍스트의 처리에 유리하다. 최근, 텍스트에서 바로 써픽스 배열을 선형시간에 구축하는 알고리즘들이 발표되었다. 그러나 이들 알고리즘은 정수 문자집합을 위한 알고리즘들이었다. 본 논문에서는 고정길이 문자집합에 대해 써픽스 배열을 빠르게 구축하는 알고리즘을 소개한다. 그리고 실험을 통해서 DNA 스트링과 같은 고정길이 문자집합에 대해서 다른 알고리즘들과 구축시간을 비교하여 속도 향상이 있음을 보인다.

  • PDF

Research Trends of Adversarial Attack Techniques in Text (텍스트 분야 적대적 공격 기법 연구 동향)

  • Kim, Bo-Geum;Kang, Hyo-Eun;Kim, Yongsu;Kim, Ho-Won
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.420-422
    • /
    • 2022
  • 인공지능 기술이 문서 분류, 얼굴 인식, 자율 주행 등 실생활 전반에 걸쳐 다양한 분야에 적용됨에 따라, 인공지능 모델에 대한 취약점을 미리 파악하고 대비하는 기술의 중요성이 높아지고 있다. 이미지 영역에서는 입력 데이터에 작은 섭동을 추가해 신경망을 속이는 방법인 적대적 공격 연구가 활발하게 이루어졌지만, 텍스트 영역에서는 텍스트 데이터의 이산적인 특징으로 인해 연구에 어려움이 존재한다. 본 논문은 텍스트 분야 인공지능 기술에 대한 적대적 공격 기법을 분석하고 연구의 필요성을 살펴보고자 한다.

100 K-Poison: Poisonous Texts Resistance Test Dataset For Korean Generative Models (100 K-Poison: 한국어 생성 모델을 위한 독성 텍스트 저항력 검증 데이터셋 )

  • Li Fei;Yejee Kang;Seoyoon Park;Yeonji Jang;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.149-154
    • /
    • 2023
  • 본고는 한국어 생성 모델의 독성 텍스트 저항 능력을 검증하기 위해 'CVALUE' 데이터셋에서 추출한 고난도 독성 질문-대답 100쌍을 바탕으로 한국어 생성 모델을 위한 '100 K-Poison' 데이터셋을 시범적으로 구축했다. 이 데이터셋을 토대로 4가지 대표적인 한국어 생성 모델 'ZeroShot TextClassifcation'과 'Text Generation7 실험을 진행함으로써 현재 한국어 생성 모델의 독성 텍스트 식별 및 응답 능력을 종합적으로 고찰했고, 모델 간의 독성 텍스트 저항력 격차 현상을 분석했으며, 앞으로 한국어 생성 모델의 독성 텍스트 식별 및 웅대 성능을 한층 더 강화하기 위한 '이독공독(以毒攻毒)' 학습 전략을 새로 제안하였다.

  • PDF