• Title/Summary/Keyword: 학술적 텍스트

Search Result 1,089, Processing Time 0.04 seconds

A Text-based Similarity Measure for Scientific Literature (텍스트 기반 논문 유사도 계산 방안)

  • Yoon, Seok-Ho;Hwang, Won-Seok;Kim, Sang-Wook
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.858-859
    • /
    • 2010
  • 본 논문에서는 텍스트 기반 유사도 계산 방안을 이용하여 논문들 간의 유사도를 계산하는 방안을 제안한다. 논문 데이터베이스에는 논문의 본문이 거의 저장되어 있지 않다. 따라서 논문 데이터베이스에 저장되어 있는 논문의 제목과 요약글들의 키워드들을 이용하여 기존 텍스트 기반 유사도 계산 방안으로 논문들 간의 유사도를 계산할 수 있다. 그러나 논문의 제목과 요약글은 논문의 본문이 가지고 있는 키워드들에 비해서 너무나도 적은 수의 키워드들을 가지고 있기 때문에 해당 키워드들만으로 논문들 간의 유사도를 계산하면 정확도가 낮을 수 있다. 따라서 본 논문에서는 논문을 표현하는 키워드의 수를 증가시키기 위해서 새로운 논문 유사도 계산 방안을 제안한다. 실험을 통하여 제안하는 방안의 우수성을 검증한다.

VL-KE-T5: A contrastive learning-based pre-trained model using image-language parallel data composed of Korean and English (VL-KE-T5: 한국어와 영어로 구성된 영상-언어 병렬 데이터를 이용한 대조학습 기반 사전학습모델 구축)

  • San Kim;Saim, Shin
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.337-342
    • /
    • 2022
  • 본 논문은 한국어-영어 기반 영상-언어 모델인 VL-KE-T5를 소개한다. VL-KE-T5는 영상-텍스트 쌍으로 구성된 한국어와 영어 데이터 약 2천 3백만개를 이용하여 영상-언어 모델의 임베딩 벡터들을 정렬시킨 사전학습모델이며, 미세조정을 통하여 여러 영상-언어 작업에 활용할 할 수 있다. VL-KE-T5는 텍스트 기반 영상 검색 작업에서 높은 성능을 보였으나, 세세한 속성을 가진 여러 객체들의 나열이나 객체 간 관계를 포함한 텍스트 기반 영상 검색에서는 비교적 낮은 성능을 보였다.

  • PDF

A Mobile Spam SMS Filtering System using Machine learning about syllable and the features of caller ID (발신번호 특징 및 음절단위 기계학습을 통한 모바일 스팸 SMS 필터링 시스템)

  • You, Hwan-il;Chae, Dong Kyu;Im, Eul-Gyu
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.219-222
    • /
    • 2011
  • 본 논문에서는 스팸 SMS 발신번호와 메시지 텍스트의 특징을 기계학습한 스팸 필터링 시스템을 논한다. 최근 변화하는 스팸SMS에 대한 적응력을 위해서, 각 트레이닝 셋의 수신 텍스트를 음절단위로 분석 할 것을 제안한다. 그리고 기존의 분류기는 성능이 미흡하거나 구현의 복잡성으로 인해 실제로 스펨 필터엔진으로 활용되지 않는 점을 극복하기 위해서 보다 단순한 분류기를 사용한다. 제안하는 시스템은 트레이닝 셋의 발신번호 및 수신 텍스트의 음절단위를 빈도수와 묶어 학습데이터를 구성하고, 테스트 셋을 스팸적 논스팸적으로 분석하여 스팸일 확률을 계산한다. 또한 Naive baysian를 바탕으로 한 경계값 기반 분류기를 통해, 타 분류기에 비해 구현 및 활용면에서 실용성이 높으면서도 성능이 뒤처지지 않는 시스템을 제안한다.

AI Announcer : Information Transfer Software Using Artificial Intelligence Technology (AI 아나운서 : 인공지능 기술을 이용한 정보 전달 소프트웨어)

  • Kim, Hye-Won;Lee, Young-Eun;Lee, Hong-Chang
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.937-940
    • /
    • 2020
  • 본 논문은 AI 기술을 기반으로 텍스트 스크립트를 자동으로 인식하고 영상 합성 기술을 응용하여 텍스트 정보를 시각화하는 AI 아나운서 소프트웨어 연구에 대하여 기술한다. 기존의 AI 기반 영상 정보 전달 서비스인 AI 앵커는 텍스트를 인식하여 영상을 합성하는데 오랜 시간이 필요하였으며, 특정 인물 이미지로만 영상 합성이 가능했기 때문에 그 용도가 제한적이었다. 본 연구에서 제안하는 방법은 Tacotron 으로 새로운 음성을 학습 및 합성하여, LRW 데이터셋으로 학습된 모델을 사용하여 자연스러운 영상 합성 체계를 구축한다. 단순한 얼굴 이미지의 합성을 개선하고 다채로운 이미지 제작을 위한 과정을 간략화하여 다양한 비대면 영상 정보 제공 환경을 구성할 수 있을 것으로 기대된다.

Korean Pre-trained Model KE-T5-based Automatic Paper Summarization (한국어 사전학습 모델 KE-T5 기반 자동 논문 요약)

  • Seo, Hyeon-Tae;Shin, Saim;Kim, San
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.505-506
    • /
    • 2021
  • 최근 인터넷에서 기하급수적으로 증가하는 방대한 양의 텍스트를 자동으로 요약하려는 연구가 활발하게 이루어지고 있다. 자동 텍스트 요약 작업은 다양한 사전학습 모델의 등장으로 인해 많은 발전을 이루었다. 특히 T5(Text-to-Text Transfer Transformer) 기반의 모델은 자동 텍스트 요약 작업에서 매우 우수한 성능을 보이며, 해당 분야의 SOTA(State of the Art)를 달성하고 있다. 본 논문에서는 방대한 양의 한국어를 학습시킨 사전학습 모델 KE-T5를 활용하여 자동 논문 요약을 수행하고 평가한다.

  • PDF

Video Summarization with ChatGPT (ChatGPT 를 활용한 영상 요약 모델에 관한 연구)

  • Wonho Lee;Jungyu Kang;Nayoung Seong;Suhyeon Cho ;Youngjong Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.694-695
    • /
    • 2023
  • 최근 ChatGPT 를 각 분야에 활용하는 연구가 활발하게 이루어지고 있다. ChatGPT 는 최신 자연어 처리 모델로, 텍스트를 통해 입출력을 진행한다. 본 논문에서는 이러한 ChatGPT 를 활용하여 영상을 효과적으로 요약할 수 있는 새로운 접근 방식을 제시한다. STT 기술을 사용하여 영상의 자막에 대한 텍스트 파일을 추출하고 이를 ChatGPT 로 요약한다. 최종적으로 기존 텍스트와의 유사도 분석을 통해 유사도가 높은 부분을 선택하여 영상을 편집하고 요약한다.

Evaluation of Major Heavy Rain Events in the Annals and Rainfall Records of the Joseon Dynasty using Text Mining (텍스트마이닝을 이용한 조선왕조실록 및 측우기기록에 나타난 주요 호우사상의 평가)

  • Kim, Gwan-Jun;Kim, Soon-Mi;Lee, Dong-Hwan;Chae, Mool-Seok;Jeong, Sang
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.198-199
    • /
    • 2023
  • 본 연구에서는 조선왕조실록을 중심으로 조선시대의 호우 및 홍수기록의 기술방법에 대해 텍스트마이닝 분석을 실시하였다. 조선왕조실록은 조선시대의 큰 호우사상은 모두 포함하고 있기 때문에 이를 일정한 등급으로 나누어 분류한다면 극치 호우 사상의 발생특성을 이해하는데 도움이 될 수 있다. 전체적으로 '큰비'에서와 같이 강우에 대한 언급만이 있는 경우가 '큰물', '홍수', '폭우'와 같이 홍수유출 및 이에 따른 피해가 설명되어 있는 경우보다 강우의 재현기간이 작게 나타나는 것을 파악할 수 있었다. 또 하나 주목할만한 점은 기록된 호우사상이 강우의 총량보다는 강우의 지속기간에 보다 민감하다는 점이다. 즉, 일시에 많은 비가 온 경우보다는 장기간에 걸쳐 내린 호우사상에 보다 초점이 맞추어져 있다는 점이다. 즉, 홍수유출의 크기 및 이에 따른 피해의 정도가 실제 이들 호우사상이 기록으로 남게 되는 원인으로 파악된다.

  • PDF

A Pattern Matching Method of Large-Size Text Log Data using In-Memory Relational Database System (인메모리 관계형 데이터베이스 시스템을 이용한 대용량 텍스트 로그 데이터의 패턴 매칭 방법)

  • Han, Hyeok;Choi, Jae-Yong;Jin, Sung-Il
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.837-840
    • /
    • 2017
  • 각종 사이버 범죄가 증가함에 따라 실시간 모니터링을 통한 사전 탐지 기술뿐만 아니라, 사후 원인 분석을 통한 사고 재발 방지 기술의 중요성이 증가하고 있다. 사후 분석은 시스템에서 생산된 다양한 유형의 대용량 로그를 기반으로 분석가가 보안 위협 과정을 규명하는 것으로 이를 지원하는 다양한 상용 및 오픈 소스 SW 존재하나, 대부분 단일 분석가 PC에서 운용되는 파일 기반 SW로 대용량 데이터에 대한 분석 성능 저하, 다수 분석가 간의 데이터 공유 불가, 통계 연관 분석 한계 및 대화형 점진적 내용 분석 불가 등의 문제점을 해결하지 못하고 있다. 이러한 문제점을 해결하기 위하여 고성능 인메모리 관계형 데이터베이스 시스템을 로그 스토리지로 활용하는 대용량 로그 분석 SW 개발하였다. 특히, 기 확보된 공격자 프로파일을 활용하여 공격의 유무를 확인하는 텍스트 패턴 매칭 연산은 전통적인 관계형 데이터베이스 시스템의 FTS(Full-Text Search) 기능 활용이 가능하나, 대용량 전용 색인 생성에 따른 비현실적인 DB 구축 소요 시간과 최소 3배 이상의 DB 용량 증가로 인한 시스템 리소스 추가 요구 등의 단점이 있다. 본 논문에서는 인메모리 관계형 데이터베이스 시스템 기반 효율적인 텍스트 패턴 매칭 연산을 위하여, 고성능의 대용량 로그 DB 적재 방법과 새로운 유형의 패턴 매칭 방법을 제안하였다.

Scaling Documents' Semantic Transparency Spectrum with Semantic Hypernetwork (Semantic Hypernetwork 학습에 의한 자연언어 텍스트의 의미 구분)

  • Lee, Eun-Seok;Kim, Joon-Shik;Shin, Won-Jin;Park, Chan-Hoon;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.289-294
    • /
    • 2008
  • 어떤 자연언어 문서가 전달하려는 의미는 그 텍스트의 성격에 따라 아주 명확할 수도(예: 뉴스 문서), 아주 불분명할 수도 있다(예: 시). 이 연구는 이러한 '의미의 명확성(semantic transparency)'을 정량적으로 측정할 수 있다고 가정하고, 이 의미의 명확성을 판단하는 데에 단어들의 연쇄(word association)의 확률통계적 성질들이 어떻게 기능하는지에 대해 논한다. 이를 위해 특정 단어가 연쇄체를 형성하면서 발생하는 neighboring frequency와 degeneracy를 중심으로 Markov chain Monte Carlo scheme을 적용하여 의미망('Semantic Hypernetwork')으로 학습시킨 후 문서의 구성 단어들과 그 집합들 간의 연결 상태를 파악하였다. 우리는 의미적으로 그 표상이 분명하게 나뉘는 문서들(뉴스와 시)을 대상으로 이 모델이 어떻게 이들의 의미적 명확성을 분류하는지 분석하였다. Neighboring frequency와 degeneracy, 이 두 속성이 언어구조에서의 의미망 기억과 학습 탐색 기제에 유의한 기질로서 제안될 수 있다. 본 연구의 주요 결과로 1) 텍스트의 의미론적 투명성을 구별하는 통계적 증거와, 2) 문서의 의미구조에 대한 새로운 기질 발견, 3) 기존의 문서의 카테고리 별 분류와는 다른 방식의 분류 방식 제안을 들 수 있다.

  • PDF

An Analysis of Flood Vulnerability by Administrative Region through Big Data Analysis (빅데이터 분석을 통한 행정구역별 홍수 취약성 분석)

  • Yu, Yeong UK;Seong, Yeon Jeong;Park, Tae Gyeong;Jung, Young Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.193-193
    • /
    • 2021
  • 전 세계적으로 기후변화가 지속되면서 그에 따른 자연재난의 강도와 발생 빈도가 증가하고 있다. 자연재난의 발생 유형 중 집중호우와 태풍으로 인한 수문학적 재난이 대부분을 차지하고 있으며, 홍수피해는 지역적 수문학적 특성에 따라 피해의 규모와 범위가 달라지는 경향을 보인다. 이러한 이질적인 피해를 관리하기 위해서는 많은 홍수피해 정보를 수집하는 것이 필연적이다. 정보화 시대인 요즘 방대한 양의 데이터가 발생하면서 '빅데이터', '머신러닝', '인공지능'과 같은 말들이 다양한 분야에서 주목을 받고 있다. 홍수피해 정보에 대해서도 과거 국가에서 발간하는 정보외에 인터넷에는 뉴스기사나 SNS 등 미디어를 통하여 수많은 정보들이 생성되고 있다. 이러한 방대한 규모의 데이터는 미래 경쟁력의 우위를 좌우하는 중요한 자원이 될 것이며, 홍수대비책으로 활용될 소중한 정보가 될 수 있다. 본 연구는 인터넷기반으로 한 홍수피해 현상 조사를 통해 홍수피해 규모에 따라 발생하는 홍수피해 현상을 파악하고자 하였다. 이를 위해 과거에 발생한 홍수피해 사례를 조사하여 강우량, 홍수피해 현상 등 홍수피해 관련 정보를 조사하였다. 홍수피해 현상은 뉴스기사나 보고서 등 미디어 정보를 활용하여 수집하였으며, 수집된 비정형 형태의 텍스트 데이터를 '텍스트 마이닝(Text Mining)' 기법을 이용하여 데이터를 정형화 및 주요 홍수피해 현상 키워드를 추출하여 데이터를 수치화하여 표현하였다.

  • PDF